Skip to main content
Log in

Analysis of a Full Discretization for a Fractional/Normal Diffusion Equation with Rough Dirichlet Boundary Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper considers a fully discrete approximation of a fractional/normal diffusion equation with rough Dirichlet boundary data. The approximation uses the standard continuous piecewise linear element in space, and uses the L1 scheme in time. Nearly \( \alpha /4 \)-order temporal accuracy and nearly 1/2-order spatial accuracy are derived, where the spatial mesh size h and the time step \( \tau \) are independent. Numerical results are provided to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Choudury, G.: Fully discrete approximations of parabolic boundary-value problems with nonsmooth boundary data. Numer. Math. 57, 179–203 (1990)

    Article  MathSciNet  Google Scholar 

  2. Choudury, G.: Fully discrete approximations of parabolic boundary-value problems with nonsmooth boundary data. Appl. Math. Optim. 31, 41–55 (1995)

    Article  MathSciNet  Google Scholar 

  3. Eriksson, K., Johnson, C., Thomée, V.: Time discretization of parabolic problems by the discontinuous galerkin method. RAIRO Modél. Math. Anal. Numér. 19, 611–643 (1985)

    Article  MathSciNet  Google Scholar 

  4. Evans, L.C.: Partial differential equations. American Mathematical Society, (2010)

  5. French, D.A., King, J.T.: Analysis of a robust finite element approximation for a parabolic equation with rough boundary data. Math. Comput. 60, 79–104 (1993)

    Article  MathSciNet  Google Scholar 

  6. Gong, W., Hinze, M., Zhou, Z.: Finite element method and a priori error estimates for dirichlet boundary control problems governed by parabolic pdes. J. Sci. Comput. 66, 941–967 (2016)

    Article  MathSciNet  Google Scholar 

  7. Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)

    Article  MathSciNet  Google Scholar 

  8. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445–466 (2013)

    Article  MathSciNet  Google Scholar 

  9. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the l1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci Comput. 38(1), A146–A170 (2016)

    Article  MathSciNet  Google Scholar 

  11. Jin, B., Li, B., Zhou, Z.: Subdiffusion with a time-dependent coefficient: analysis and numerical solution. Math. Compu. 88, 2157–2186 (2019)

    Article  MathSciNet  Google Scholar 

  12. Lasiecka, I.: Galerkin approximations of abstract parabolic boundary value problems with rough boundary data-\(L_p\) theory. Math. Comput. 47, 55–75 (1986)

    MATH  Google Scholar 

  13. Li, B., Luo, H., Xie, X.: Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data. SIAM J. Numer. Anal. 57(2), 779–798 (2019)

    Article  MathSciNet  Google Scholar 

  14. Li, B., Xie, X., Yan, Y.: L1 scheme for solving an inverse problem subject to a fractional diffusion equation. arXiv:2006.04291v1, (2020)

  15. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  16. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972)

    Book  Google Scholar 

  17. Lubich, C., Sloan, I., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65(213), 1–17 (1996)

    Article  MathSciNet  Google Scholar 

  18. Luo, H., Li, B., Xie, X.: Convergence analysis of a Petrov-Galerkin method for fractional wave problems with nonsmooth data. J. Sci. Comput. 80(2), 957–992 (2019)

    Article  MathSciNet  Google Scholar 

  19. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  20. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56(1), 210–227 (2018)

    Article  MathSciNet  Google Scholar 

  21. Zhou, Q., Li, B.: Temporally semidiscrete approximation of a Dirichlet boundary control for a fractional/normal evolution equation with a final observation. J. Sci. Comput. 88, 5 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (11901410, 11971337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minfu Feng.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Natural Science Foundation of China (11901410, 11971337)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Feng, M. Analysis of a Full Discretization for a Fractional/Normal Diffusion Equation with Rough Dirichlet Boundary Data. J Sci Comput 92, 25 (2022). https://doi.org/10.1007/s10915-022-01875-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01875-y

Keywords

Navigation