Skip to main content
Log in

A Spatio-temporal Optimal, Hybird Compact–WENO Scheme with Minimized Dispersion and Critical-adaptive Dissipation for Solving Compressible Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, based on our previous optimal compact schemes with minimized dispersion and controllable dissipation (OC–WENO schemes) (Sun et al. in Sci China-Phys Mech Astron 57:971–982, 2014), a spatio-temporal optimized, hybird compact-WENO scheme with minimized dispersion and critical-adaptive dissipation is developed for solving compressible flows. Firstly, the spectral properties of the fourth-order OC–WENO scheme is researched within the spatio-temporal discrete framework. In conjunction with total dispersion error of the fully scheme, an integrated error function is designed to optimize the dispersion property. Secondly, the scale sensor leveraged to quantify the local scaled wavenumber is optimized in the wavenumber space to improve the accuracy of estimating. Moreover, a dispersion-dissipation condition, controlling the relative proportion of dispersion and dissipation errors, is developed for the fully discrete scheme. Thirdly, by exploiting the optimized scale sensor and the dispersion-dissipation condition, the critical-adaptive dissipation surface is constructed to achieve the adaptive dissipation property relating to the local characteristics of the flow fields and different Courant number. To have the shock-capturing capability, the proposed compact scheme is blended with fifth-order WENO scheme to form the MDADFC–WENO scheme. Finally, a set of benchmark test cases is employed to validate the good performance of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availibility

Enquiries about data availability should be directed to the authors.

References

  1. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  2. Jiang, G.S., Shu, C.W.: Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  3. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  Google Scholar 

  4. Martín, M., Taylor, E., Wu, M., Weirs, V.: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270–289 (2006)

    Article  Google Scholar 

  5. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  6. Hu, X., Wang, Q., Adams, N.A.: An adaptive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229, 8952–8965 (2010)

    Article  MathSciNet  Google Scholar 

  7. Fu, L., Hu, X.Y., Adams, N.A.: Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws. J. Comput. Phys. 349, 97–121 (2017)

    Article  MathSciNet  Google Scholar 

  8. Adams, N., Shariff, K.: A high-resolution Hybrid Compact-ENO Scheme for Shock-Turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996)

    Article  MathSciNet  Google Scholar 

  9. Pirozzoli, S.: Conservative hybrid Compact-WENO Schemes for Shock-Turbulence Interaction. J. Comput. Phys. 178, 81–117 (2002)

    Article  MathSciNet  Google Scholar 

  10. Ren, Y.X., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 365–386 (2003)

    Article  MathSciNet  Google Scholar 

  11. Deng, X., Zhang, H.: Developing high-order weighted compact nonlinear schemes. J. Comput. Phys. 165, 22–44 (2000)

    Article  MathSciNet  Google Scholar 

  12. Wong, M.L., Lele, S.K.: High-order localized dissipation weighted compact nonlinear scheme for shock-and interface-capturing in compressible flows. J. Comput. Phys. 339, 179–209 (2017)

    Article  MathSciNet  Google Scholar 

  13. Shi, Y., Guo, Y.: A fifth order alternative Compact-WENO finite difference scheme for compressible euler equations. J. Comput. Phys. 397, 108873 (2019)

    Article  MathSciNet  Google Scholar 

  14. Sun, Z.-S., Ren, Y.-X., Larricq, C., Zhang, S.-Y., Yang, Y.-C.: A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence. J. Comput. Phys. 230, 4616–4635 (2011)

    Article  MathSciNet  Google Scholar 

  15. Li, Y., Chen, C., Ren, Y.-X.: A class of high-order finite difference schemes with minimized dispersion and adaptive dissipation for solving compressible flows. J. Comput. Phys. 448, 110770 (2022)

    Article  MathSciNet  Google Scholar 

  16. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  Google Scholar 

  17. Tam, C.K.: Computational aeroacoustics-Issues and methods. AIAA J. 33, 1788–1796 (1995)

    Article  Google Scholar 

  18. Tam, C.K., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)

    Article  MathSciNet  Google Scholar 

  19. Sengupta, T.K., Sircar, S., Dipankar, A.: High accuracy schemes for DNS and acoustics. J. Scientific Comput. 26, 151–193 (2006)

    Article  MathSciNet  Google Scholar 

  20. Sun, Z., Hu, Y., Luo, L., Zhang, S., Yang, Z.: A high-resolution, hybrid compact-WENO scheme with minimized dispersion and controllable dissipation. SCIENCE CHINA Phys. Mech. Astron. 57, 971–982 (2014)

    Article  Google Scholar 

  21. Hu, X.Y., Adams, N.: Dispersion-dissipation condition for finite difference schemes, arXiv:1204.5088v1

  22. Tam, C.K.: Problem 1-aliasing, Fourth Computational Aeroacoustics (CAA) Workshop on benchmark problems, NASA/CP-2004-212954

  23. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the riemann problem for two-dimensional gas dynamics. SIAM J. Scientific Comput. 14, 1394–1414 (1993)

    Article  MathSciNet  Google Scholar 

  24. Liska, R., Wendroff, B.: Comparison of several difference schemes on 1d and 2d test problems for the Euler equations. SIAM J. Scientific Comput. 25, 995–1017 (2003)

    Article  MathSciNet  Google Scholar 

  25. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Evaluation of riemann flux solvers for weno reconstruction schemes: Kelvinhelmholtz instability. SIAM J. Scientific Comput. 14, 24–41 (2015)

    Google Scholar 

  26. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (91952110), the project 2019-JCJQ-JJ-103 and the project 2021-JCJQ-JJ-0424.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhensheng Sun.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Sun, Z., Hu, Y. et al. A Spatio-temporal Optimal, Hybird Compact–WENO Scheme with Minimized Dispersion and Critical-adaptive Dissipation for Solving Compressible Flows. J Sci Comput 92, 29 (2022). https://doi.org/10.1007/s10915-022-01884-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01884-x

Keywords

Navigation