Skip to main content
Log in

The Bogner-Fox-Schmit Element Finite Volume Methods on the Shishkin Mesh for Fourth-Order Singularly Perturbed Elliptic Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, the Bogner-Fox-Schmit (BFS) element finite volume methods (FVM) on a suitable Shishkin mesh for the fourth-order singular perturbed elliptic problems are constructed and analyzed . Firstly, under the proposed several equivalent discrete semi-norms, we convert the analysis of stability to the proof of positive definite property for several matrices by element analysis and algebraic techniques. Then we obtain the stability of the BFS element finite volume schemes, which is independent of the aspect ratio of rectangular elements. Secondly, with reasonable assumptions about the structure of the solution, we establish the error estimate of a special interpolation on the Shishkin mesh. Furthermore, based on the stability and interpolation error estimate, we analyze the error estimate of the finite volume methods. The optimal convergence rate for the energy norm \(N^{-3}+\varepsilon ^{\frac{1}{2}}N^{-2}(\ln N)^2\) is obtained by a particular choice of the transition point for the Shishkin mesh. Finally, numerical experiments are presented to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Bi, H., Ren, S., Yang, Y.: Conforming finite element approximations for a fourth-order Steklov eigenvalue problem. Math. Probl. Eng. pp. Art. ID 873152, 13 (2011). https://doi.org/10.1155/2011/873152

  2. Bogner, F., Fox, R., Schmit, L.: The generation of inter-element-compatible stiffness and mass matrices by the use of interpolation formulas. Proceedings of the Conference on Matrix Methods in Structural Mechanics pp. 397–443 (1965)

  3. Brenner, S.C., Neilan, M.: A \(C^0\) interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49(2), 869–892 (2011). https://doi.org/10.1137/100786988

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, Z., Douglas, J., Jr., Park, M.: Development and analysis of higher order finite volume methods over rectangles for elliptic equations. Adv. Comput. Math. 19, 3–33 (2003). https://doi.org/10.1023/A:1022841012296. Challenges in computational mathematics (Pohang, 2001)

  5. Cao, W., Zhang, Z., Zou, Q.: Finite volume superconvergence approximation for one-dimensional singularly perturbed problems. J. Comput. Math. 31(5), 488–508 (2013). https://doi.org/10.4208/jcm.1304-m4280

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, H., Chen, S.: Uniformly convergent nonconforming element for 3-D fourth order elliptic singular perturbation problem. J. Comput. Math. 32(6), 687–695 (2014). https://doi.org/10.4208/jcm.1405-m4303

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, S., Yang, Y., Mao, S.: Anisotropic conforming rectangular elements for elliptic problems of any order. Appl. Numer. Math. 59(5), 1137–1148 (2009). https://doi.org/10.1016/j.apnum.2008.05.004

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z.: Generalized difference methods based on Adini elements for biharmonic equations (in chinese). Acta Sci. Natur. Univ. Sunyaseni 32(1), 21–29 (1993)

  9. Chen, Z., He, C., Wu, B.: High order finite volume methods for singular perturbation problems. Sci. China Ser. A 51(8), 1391–1400 (2008). https://doi.org/10.1007/s11425-008-0120-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Z., Wu, J., Xu, Y.: Higher-order finite volume methods for elliptic boundary value problems. Adv. Comput. Math. 37(2), 191–253 (2012). https://doi.org/10.1007/s10444-011-9201-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet, P.G.: The finite element method for elliptic problems. Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978)

  12. Constantinou, P., Franz, S., Ludwig, L., Xenophontos, C.: A mixed \(hp\) FEM for the approximation of fourth-order singularly perturbed problem on smooth domains. Numer. Methods Partial Differ. Equ. 35(1), 114–127 (2019). https://doi.org/10.1002/num.22289

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantinou, P., Xenophontos, C.: An \(hp\) finite element method for a 4th order singularly perturbed boundary value problem in two dimensions. Comput. Math. Appl. 74(7), 1565–1575 (2017). https://doi.org/10.1016/j.camwa.2017.02.009

    Article  MathSciNet  MATH  Google Scholar 

  14. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Engrg. 191(34), 3669–3750 (2002). https://doi.org/10.1016/S0045-7825(02)00286-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust computational techniques for boundary layers, Applied Mathematics (Boca Raton), vol. 16. Chapman & Hall/CRC, Boca Raton, FL (2000)

    Book  MATH  Google Scholar 

  16. Franz, S., Roos, H.G.: Robust error estimation in energy and balanced norms for singularly perturbed fourth order problems. Comput. Math. Appl. 72(1), 233–247 (2016). https://doi.org/10.1016/j.camwa.2016.05.001

    Article  MathSciNet  MATH  Google Scholar 

  17. Franz, S., Roos, H.G.: Error estimates in balanced norms of finite element methods for higher order reaction-diffusion problems. Int. J. Numer. Anal. Model. 17(4), 532–542 (2020)

    MathSciNet  Google Scholar 

  18. Franz, S., Roos, H.G., Wachtel, A.: A \(\rm C^0\) interior penalty method for a singularly-perturbed fourth-order elliptic problem on a layer-adapted mesh. Numer. Methods Partial Differ. Equ. 30(3), 838–861 (2014). https://doi.org/10.1002/num.21839

    Article  MATH  Google Scholar 

  19. Guo, H., Huang, C., Zhang, Z.: Superconvergence of conforming finite element for fourth-order singularly perturbed problems of reaction diffusion type in 1D. Numer. Methods Partial Differ. Equ. 30(2), 550–566 (2014). https://doi.org/10.1002/num.21827

    Article  MathSciNet  MATH  Google Scholar 

  20. Kopteva, N., O’Riordan, E.: Shishkin meshes in the numerical solution of singularly perturbed differential equations. Int. J. Numer. Anal. Model. 7(3), 393–415 (2010). https://doi.org/10.3844/ajassp.2010.415.419

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, H., Ming, P., Shi, Z.C.: Two robust nonconforming \({{\rm H}}^2\)-elements for linear strain gradient elasticity. Numer. Math. 137(3), 691–711 (2017). https://doi.org/10.1007/s00211-017-0890-x

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, R., Chen, Z., Wu, W.: Generalized difference methods for differential equations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 226. Marcel Dekker, Inc., New York (2000). Numerical analysis of finite volume methods

  23. Li, Y., Li, R.: Generalized difference methods on arbitrary quadrilateral networks. J. Comput. Math. 17(6), 653–672 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Liu, F., Madden, N., Stynes, M., Zhou, A.: A two-scale sparse grid method for a singularly perturbed reaction-diffusion problem in two dimensions. IMA J. Numer. Anal. 29(4), 986–1007 (2009). https://doi.org/10.1093/imanum/drn048

    Article  MathSciNet  MATH  Google Scholar 

  25. Mallik, G., Nataraj, N.: Conforming finite element methods for the von Kármán equations. Adv. Comput. Math. 42(5), 1031–1054 (2016). https://doi.org/10.1007/s10444-016-9452-5

    Article  MathSciNet  MATH  Google Scholar 

  26. Meng, X., Stynes, M.: Convergence analysis of the Adini element on a Shishkin mesh for a singularly perturbed fourth-order problem in two dimensions. Adv. Comput. Math. 45(2), 1105–1128 (2019). https://doi.org/10.1007/s10444-018-9646-0

    Article  MathSciNet  MATH  Google Scholar 

  27. Panaseti, P., Zouvani, A., Madden, N., Xenophontos, C.: A \(C^1\)-conforming \(hp\) finite element method for fourth order singularly perturbed boundary value problems. Appl. Numer. Math. 104, 81–97 (2016). https://doi.org/10.1016/j.apnum.2016.02.002

    Article  MathSciNet  MATH  Google Scholar 

  28. Semper, B.: Conforming finite element approximations for a fourth-order singular perturbation problem. SIAM J. Numer. Anal. 29(4), 1043–1058 (1992). https://doi.org/10.1137/0729063

    Article  MathSciNet  MATH  Google Scholar 

  29. Shi, Z., Wang, M.: Finite Element Method (in Chinese), Information and Computing Sciences, vol. 46. Science Publishers in China (2010)

  30. Shishkin, G.I.: A difference scheme for a singularly perturbed equation of parabolic type with a discontinuous initial condition. Dokl. Akad. Nauk SSSR 300(5), 1066–1070 (1988)

    MathSciNet  Google Scholar 

  31. Stynes, M., O’Riordan, E.: A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem. J. Math. Anal. Appl. 214(1), 36–54 (1997). https://doi.org/10.1006/jmaa.1997.5581

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, G., Stynes, M.: An almost fourth order uniformly convergent difference scheme for a semilinear singularly perturbed reaction-diffusion problem. Numer. Math. 70(4), 487–500 (1995). https://doi.org/10.1007/s002110050130

    Article  MathSciNet  MATH  Google Scholar 

  33. Vasil’eva, A.B., Butuzov, V.F., Kalachev, L.V.: The boundary function method for singular perturbation problems, SIAM Studies in Applied Mathematics, vol. 14. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1995). https://doi.org/10.1137/1.9781611970784. With a foreword by Robert E. O’Malley, Jr

  34. Wang, M., Xu, J.C., Hu, Y.C.: Modified Morley element method for a fourth order elliptic singular perturbation problem. J. Comput. Math. 24(2), 113–120 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Wang, Y., Meng, X., Li, Y.: The finite volume element method on the Shishkin mesh for a singularly perturbed reaction-diffusion problem. Comput. Math. Appl. 84, 112–127 (2021). https://doi.org/10.1016/j.camwa.2020.12.011

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the help of two anonymous referees. With their suggestions, our article has been significantly improved and enhanced.

Funding

This work is partially supported by the National Science Foundation of China (No.12071177,No.12101039), the ScienceChallenge Project (No.TZ2016002) and the FundamentalResearch Funds for the Central Universities (2020RC101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghai Li.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Some Matrices in the Proof of Lemma 1

The matrices \(M_i, i=1\dots 5\) on page 10 are showed as follows.

Appendix B. The Proof of Lemma 2

Proof

According to (2.5) and the definition of \(\varPi _h^*u_h\), we get

$$\begin{aligned}&\Vert \varPi _h^*u_h\Vert _{K_{ij}}^2=\sum _{P\in \mathring{K}_{ij}}\int _{K_P^*\cap K_{ij}}(\varPi _h^*u_h)^2dxdy=h_x^ih_y^jU^TW_0U,\\&\Vert u_h\Vert _{K_{ij}}^2=\int _{K_{ij}}(u_h)^2dxdy=h_x^ih_y^jU^TWU, \end{aligned}$$

where U is a 16-dimensional vector as follows

$$\begin{aligned} U=&[u^1,u^2,u^3,u^4,h_x^{i}u^1_x,h_x^{i}u^2_x,h_x^{i}u^3_x,h_x^{i}u^4_x,h_y^{j}u^1_y,h_y^{j}u^2_y,\\&h_y^{j}u^3_y,h_y^{j}u^4_y,h_x^{i}h_y^{j}u^1_{xy},h_x^{i}h_y^{j}u^2_{xy},h_x^{i}h_y^{j}u^3_{xy},h_x^{i}h_y^{j}u^4_{xy}]^T, \end{aligned}$$

and

$$\begin{aligned} W_0=diag\left[ \frac{1}{4}A_0,\frac{1}{48}A_0,\frac{1}{48}A_0,\frac{1}{576}A_0\right] , \quad A_0=diag[1,1,1,1]. \end{aligned}$$

Note that \(W_0\) and W are both symmetric positive definite matrixes, we can obtain

$$\begin{aligned} c_5\Vert \varPi _h^*u_h\Vert _{K_{ij}}^2\le \Vert u_h\Vert _{K_{ij}}^2\le c_6\Vert \varPi _h^*u_h\Vert _{K_{ij}}^2, \end{aligned}$$

where \(c_5,c_6\) are positive constants independent of \(u_h\).

Summing up the above equivalence for all \(K_{ij}\), we draw the conclusion. \(\square \)

Appendix C. Some Proof Details in Theorem 2

Proof of the local stability (3.16)

Recall the definition of \(I^1_{K_{ij}}(u_h,\varPi _h^*u_h)\), we have

$$\begin{aligned} I_{K_{ij}}^1(u_h,\varPi _h^*u_h)=&\sum _{P\in \mathring{K}_{ij}} \left[ u_h(P)a_1^K(u_h,\psi _{P}^{(0)})+\left( \frac{\partial u_h}{\partial x}\right) (P)a^K_1(u_h,\psi _{P}^{(1)})\right. \nonumber \\&\left. \quad +\left( \frac{\partial u_h}{\partial y}\right) (P)a^K_1(u_h,\psi _{P}^{(2)})+\left( \frac{\partial ^2 u_h}{\partial x\partial y}\right) (P) a^K_1(u_h,\psi _{P}^{(3)})\right] , \end{aligned}$$
(6.2)

where

$$\begin{aligned} a_1^K(u_h,\psi _{P}^{(0)})=&\int _{\partial K_P^*\cap K_{ij}}\frac{\partial \varDelta u_h}{\partial {\mathbf {n}}}ds, \\ a_1^K(u_h,\psi _{P}^{(1)})=&\int _{\partial K_P^*\cap K_{ij}}\frac{\partial \varDelta u_h}{\partial {\mathbf {n}}}(x-x_P)ds -\int _{\partial K_P^*\cap K_{ij}}\left( \frac{\partial ^2u_h}{\partial x^2}dy-\frac{\partial ^2u_h}{\partial x\partial y}dx\right) ,\\ a_1^K(u_h,\psi _{P}^{(2)})=&\int _{\partial K_P^*\cap K_{ij}}\frac{\partial \varDelta u_h}{\partial {\mathbf {n}}}(y-y_P)ds +\int _{\partial K_P^*\cap K_{ij}}\left( \frac{\partial ^2u_h}{\partial y^2}dx-\frac{\partial ^2u_h}{\partial x\partial y}dy\right) ,\\ a_1^K(u_h,\psi _{P}^{(3)})=&\int _{\partial K_P^*\cap K_{ij}}\frac{\partial \varDelta u_h}{\partial {\mathbf {n}}}(x-x_P)(y-y_P)ds\\&-\int _{\partial K_P^*\cap K_{ij}}\left( \frac{\partial ^2u_h}{\partial x^2}dy-\frac{\partial ^2u_h}{\partial x\partial y}dx\right) (y-y_P)\\&+\int _{\partial K_P^*\cap K_{ij}}\left( \frac{\partial ^2u_h}{\partial y^2}dx-\frac{\partial ^2u_h}{\partial x\partial y}dy\right) (x-x_P) +2\int _{K^*_P\cap K_{ij}}\frac{\partial ^2u_h}{\partial x\partial y}dxdy. \end{aligned}$$

Utilizing the linear combination of function values and derivative values of \(u_h\) and the definition of \(|u_h|_{2,h,K_{ij}}\), we have

$$\begin{aligned} I^1_{K_{ij}}(u_h,\varPi _h^*u_h) =&h_x^{i}h_y^{j}\left[ \frac{1}{2}\left( p_1b_{11}+p_2b_{12}+p_3b_{13}+p_4b_{14}+p_5b_{15}\right. \right. \nonumber \\&\left. \left. +p_6b_{16}+p_7b_{17}+p_8b_{18}\right) +t_1b_{19}+t_2b_{20}+t_3b_{21}+t_4b_{22}\right. \nonumber \\&\left. +t_5b_{23}+t_6b_{24}+t_7b_{25}+t_8b_{26}\right] + h_x^{i}h_y^{j}\nonumber \\&\left[ \frac{1}{2}\left( p_1d_{11}+p_3d_{12}+p_5d_{13}+p_7d_{14}+ t_1d_{15}+t_3d_{16}+t_5d_{17}+t_7d_{18}\right) \right. \nonumber \\&\left. + q_2d_{19}+q_3d_{20}+q_4d_{21}+q_7d_{22}+q_5d_{23}+q_6d_{24}+q_8d_{25}+q_9d_{26}\right] , \end{aligned}$$
(6.3)

where

$$\begin{aligned} b_{11}=&\int _0^{\frac{1}{2}}\frac{\partial }{\partial \xi } \left( \frac{\partial ^2 u_h}{\partial x^2}\right) d\eta + \theta _1\int _0^{\frac{1}{2}}\frac{\partial }{\partial \xi } \left( \frac{\partial ^2 u_h}{\partial y^2}\right) d\eta ,\\ b_{13}=&\int _{\frac{1}{2}}^1\frac{\partial }{\partial \xi } \left( \frac{\partial ^2 u_h}{\partial x^2}\right) d\eta + \theta _1\int _{\frac{1}{2}}^1\frac{\partial }{\partial \xi } \left( \frac{\partial ^2 u_h}{\partial y^2}\right) d\eta ,\\ b_{12}=&\int _0^{\frac{1}{2}}\frac{\partial ^2 u_h}{\partial x^2}d\eta ,~ b_{14}=\int _{\frac{1}{2}}^1\frac{\partial ^2 u_h}{\partial x^2}d\eta ,~\\ b_{15}=&\int _0^{\frac{1}{2}}\frac{\partial }{\partial \xi } \left( \frac{\partial ^2 u_h}{\partial x^2}\right) \cdot \eta d\eta + \theta _1\int _0^{\frac{1}{2}}\frac{\partial }{\partial \xi } \left( \frac{\partial ^2 u_h}{\partial y^2}\right) \cdot \eta d\eta ,\\ b_{16}=&\int _0^{\frac{1}{2}}\frac{\partial ^2 u_h}{\partial x^2}\cdot \eta d\eta ,~ b_{18}=\int _{\frac{1}{2}}^1\frac{\partial ^2 u_h}{\partial x^2}\cdot (\eta -1) d\eta ,~\\ b_{19}=&\int _0^{\frac{1}{2}}\frac{\partial }{\partial \eta } \left( \frac{\partial ^2 u_h}{\partial y^2}\right) d\xi + \theta _1\int _0^{\frac{1}{2}}\frac{\partial }{\partial \eta } \left( \frac{\partial ^2 u_h}{\partial x^2}\right) d\xi ,\\ b_{17}=&\int _{\frac{1}{2}}^1\frac{\partial }{\partial \xi } \left( \frac{\partial ^2 u_h}{\partial x^2}\right) (\eta -1)d\eta + \theta _1\int _{\frac{1}{2}}^1\frac{\partial }{\partial \xi } \left( \frac{\partial ^2 u_h}{\partial y^2}\right) (\eta -1)d\eta ,~\\ b_{20}=&\int _0^{\frac{1}{2}}\frac{\partial ^2 u_h}{\partial y^2}d\xi ,~ b_{22}=\int _{\frac{1}{2}}^1\frac{\partial ^2 u_h}{\partial y^2}d\xi ,\\ b_{21}=&\int _{\frac{1}{2}}^1\frac{\partial }{\partial \eta } \left( \frac{\partial ^2 u_h}{\partial y^2}\right) d\xi + \theta _1\int _{\frac{1}{2}}^1\frac{\partial }{\partial \eta } \left( \frac{\partial ^2 u_h}{\partial x^2}\right) d\xi ,\\ b_{23}=&\int _0^{\frac{1}{2}}\frac{\partial }{\partial \eta } \left( \frac{\partial ^2 u_h}{\partial y^2}\right) \cdot \xi d\xi + \theta _1\int _0^{\frac{1}{2}}\frac{\partial }{\partial \eta } \left( \frac{\partial ^2 u_h}{\partial x^2}\right) \cdot \xi d\xi ,\\ b_{24}=&\int _0^{\frac{1}{2}}\frac{\partial ^2 u_h}{\partial y^2}\xi d\xi ,~ b_{25}=\int _{\frac{1}{2}}^1\frac{\partial }{\partial \eta } \left( \frac{\partial ^2 u_h}{\partial y^2}\right) (\xi -1)d\xi + \theta _1\int _{\frac{1}{2}}^1\frac{\partial }{\partial \eta } \left( \frac{\partial ^2 u_h}{\partial x^2}\right) (\xi -1) d\xi ,\\ b_{26}=&\int _{\frac{1}{2}}^1\frac{\partial ^2 u_h}{\partial y^2}\cdot (\xi -1)d\xi ,~ d_{11}=\theta _2\int _0^{\frac{1}{2}}\frac{\partial }{\partial \eta } \left( \frac{\partial ^2 u_h}{\partial x\partial y}\right) d\eta ,~ d_{12}=\theta _2\int _{\frac{1}{2}}^1\frac{\partial }{\partial \eta } \left( \frac{\partial ^2 u_h}{\partial x\partial y}\right) d\eta ,\\ d_{13}=&\theta _2\int _0^{\frac{1}{2}}\frac{\partial }{\partial \eta } \left( \frac{\partial ^2 u_h}{\partial x\partial y}\right) \cdot \eta d\eta ,~ d_{14}=\theta _2\int _{\frac{1}{2}}^1\frac{\partial }{\partial \eta } \left( \frac{\partial ^2 u_h}{\partial x\partial y}\right) \cdot (\eta -1)d\eta ,~\\ d_{15}=&\theta _2\int _0^{\frac{1}{2}}\frac{\partial }{\partial \xi } \left( \frac{\partial ^2 u_h}{\partial x\partial y}\right) d\xi ,\\ d_{16}=&\theta _2\int _{\frac{1}{2}}^1\frac{\partial }{\partial \xi } \left( \frac{\partial ^2 u_h}{\partial x\partial y}\right) d\xi ,~ d_{17}=\theta _2\int _0^{\frac{1}{2}}\frac{\partial }{\partial \xi } \left( \frac{\partial ^2 u_h}{\partial x\partial y}\right) \cdot \xi d\xi ,~\\ d_{18}=&\theta _2\int _{\frac{1}{2}}^1\frac{\partial }{\partial \xi } \left( \frac{\partial ^2 u_h}{\partial x\partial y}\right) \cdot (\xi -1)d\xi ,\\ d_{19}=&\int _0^{\frac{1}{2}}\frac{\partial ^2 u_h}{\partial x\partial y}d\xi ,\quad d_{20}=\int _{\frac{1}{2}}^1\frac{\partial ^2 u_h}{\partial x\partial y}d\xi ,\quad d_{21}=\int _0^{\frac{1}{2}}\frac{\partial ^2 u_h}{\partial x\partial y}d\eta ,\quad d_{22}=\int _{\frac{1}{2}}^1\frac{\partial ^2 u_h}{\partial x\partial y}d\eta ,\\ d_{23}=&2\int _0^{\frac{1}{2}}\int _0^{\frac{1}{2}}\frac{\partial ^2 u_h}{\partial x\partial y}d\xi d\eta -\frac{1}{2}d_{19}-\frac{1}{2}d_{21},~\\ d_{24}=&2\int _0^{\frac{1}{2}}\int _{\frac{1}{2}}^1\frac{\partial ^2 u_h}{\partial x\partial y}d\xi d\eta -\frac{1}{2}d_{20}-\frac{1}{2}d_{21},\\ d_{25}=&2\int _{\frac{1}{2}}^1\int _0^{\frac{1}{2}}\frac{\partial ^2 u_h}{\partial x\partial y}d\xi d\eta -\frac{1}{2}d_{19}-\frac{1}{2}d_{22},~\\ d_{26}=&2\int _{\frac{1}{2}}^1\int _{\frac{1}{2}}^1\frac{\partial ^2 u_h}{\partial x\partial y}d\xi d\eta -\frac{1}{2}d_{20}-\frac{1}{2}d_{22}. \end{aligned}$$

Here we have noticed that \(\frac{\partial ^3u_h}{\partial x\partial y^2}=\theta _1\frac{\partial }{\partial x} \left( \frac{\partial ^2u_h}{\partial y^2}\right) +\theta _2\frac{\partial }{\partial y} \left( \frac{\partial ^2u_h}{\partial x\partial y}\right) \) and \(\theta _1+\theta _2=1\), \(\frac{\partial ^3u_h}{\partial x^2\partial y}\) similarly. Calculating (6.3) with (3.4)-(3.6) and selecting \(\theta _1=\frac{1}{3}, \theta _2=\frac{2}{3} \), we get

$$\begin{aligned} I^1_{K_{ij}}(u_h,\varPi _h^*u_h)=h_x^{i}h_y^{j}\left\{ \left[ \begin{array}{cc} P^T&{}T^T\\ \end{array}\right] B\left[ \begin{array}{c} P\\ T\\ \end{array}\right] +Z^TDZ\right\} , \end{aligned}$$
(6.4)

where P and T are the vectors defined at the beginning of Sect. 3. B is a symmetric positive definite matrix, the minimum eigenvalue is \(\lambda _{\min }^1\ge 8\times 10^{-4}\).

$$\begin{aligned}&\widetilde{B_1} =\frac{1}{320}\left[ \begin{array}{rrrr} 390&{}90&{}71 &{} -29\\ 90 &{} 390&{}29&{} -71 \\ 71&{}29&{} 16&{} -9\\ -29&{}-71&{} -9&{} 16\\ \end{array} \right] , ~ \widetilde{B_2} =\frac{1}{96}\left[ \begin{array}{rrrr} 36&{}-36 &{}6 &{} 6\\ -36 &{} 36&{}-6&{} -6 \\ 6&{}-6&{} 1&{} 1\\ 6&{}-6&{}1&{} 1\\ \end{array} \right] , ~\\&\widetilde{B_3} =\frac{1}{192}\left[ \begin{array}{rrrr} -24&{}-24 &{}-6 &{} 6\\ 24 &{} 24&{} 6&{} -6 \\ -4&{}-4&{}-1&{}1\\ -4&{}-4&{}-1&{}1\\ \end{array} \right] , \\&\widetilde{B_4} =\frac{1}{960}\left[ \begin{array}{rrrr} 390&{}90 &{}71 &{}-29\\ 90&{}390&{}29&{} -71 \\ 71&{}29&{}16&{}-9\\ -29&{}-71&{}-9&{} 16\\ \end{array} \right] , ~ \widetilde{B_5} =\left[ \begin{array}{rrrr} 0&{}0 &{}0 &{}0\\ 0 &{}0&{}0&{} 0 \\ 0&{}0&{} 0&{} 0\\ 0&{}0&{} 0&{} 0\\ \end{array} \right] , \quad B=\left[ \begin{array}{llll} \widetilde{B_1} &{}\widetilde{B_2} &{}\widetilde{B_5} &{} \widetilde{B_3} ^T\\ \widetilde{B_2} &{}\widetilde{B_1} &{} \widetilde{B_3} ^T&{} \widetilde{B_5} \\ \widetilde{B_5} &{} \widetilde{B_3} &{}\widetilde{B_4} &{} \widetilde{B_5} \\ \widetilde{B_3} &{} \widetilde{B_5} &{}\widetilde{B_5} &{}\widetilde{B_4} \\ \end{array} \right] . \end{aligned}$$

\(Z=\frac{1}{h_x^{i}h_y^{j}}U\) is a vector,where U is defined in the proof of Lemma 2 and D is a following 16th order real matrix,

$$\begin{aligned} \begin{matrix} D=\frac{1}{48}\left[ \begin{array}{rrrrrrrrrrrrrrrr} 72&{}-72&{}-72&{}72&{}36&{}12 &{}-36&{}-12&{}36&{}-36&{}12&{}-12&{}10&{}6&{}6&{}2\\ -72&{}72&{}72&{}-72&{}-12&{}-36&{}12&{}36&{}-36&{}36&{}-12&{}12&{}-6 &{}-10 &{}-2 &{}-6\\ -72&{}72&{}72&{}-72&{}-36&{}-12&{}36&{}12&{}-12&{}12&{}-36&{}36&{} -6&{} -2&{}-10 &{}-6\\ 72&{}-72&{}-72&{}72&{}12&{}36&{}-12&{}-36&{}12&{}-12&{}36&{}-36&{} 2&{} 6&{}6 &{}10\\ -12&{}12&{}12&{}-12&{}18&{}-6&{}-18&{}6&{}10&{}-10&{}-2&{}2&{}5 &{}1 &{}3 &{}-1\\ -12&{}12&{}12&{}-12&{}-6&{}18&{}6&{}-18&{}10&{}-10&{}-2&{}2&{}1 &{}5 &{}-1 &{}3\\ 12&{}-12&{}-12&{}12&{}-18&{}6&{}18&{}-6&{}2&{}-2&{}-10&{}10&{}-3 &{} 1&{}-5 &{}-1\\ 12&{}-12&{}-12&{}12&{}6&{}-18&{}-6&{}18&{}2&{}-2&{}-10&{}10&{}1&{}-3 &{} -1&{}-5\\ -12&{}12&{}12&{}-12&{}10&{}-2&{}-10&{}2&{}18&{}-18&{}-6&{}6&{}5 &{} 3&{}1 &{}-1\\ 12&{}-12&{}-12&{}12&{}2&{}-10&{}-2&{}10&{}-18&{}18&{}6&{}-6&{}-3 &{}-5 &{}1 &{}-1\\ -12&{}12&{}12&{}-12&{}10&{}-2&{}-10&{}2&{}-6&{}6&{}18&{}-18&{}1&{}-1 &{} 5&{}3\\ 12&{}-12&{}-12&{}12&{}2&{}-10&{}-2&{}10&{}6&{}-6&{}-18&{}18&{}1 &{}-1 &{}-3 &{}-5\\ -6&{}6&{}6&{}-6&{}-1&{}-1&{}1&{}1&{}-1&{}1&{}-1&{}1&{} 4&{}-1 &{}-1 &{}0\\ -6&{}6&{}6&{}-6&{}-1&{}-1&{}1&{}1&{}-1&{}1&{}-1&{}1&{}-1 &{} 4&{}0 &{}-1\\ -6&{}6&{}6&{}-6&{}-1&{}-1&{}1&{}1&{}-1&{}1&{}-1&{}1&{}-1 &{}0 &{}4 &{}-1\\ -6&{}6&{}6&{}-6&{}-1&{}-1&{}1&{}1&{}-1&{}1&{}-1&{}1&{}0 &{}-1 &{}-1 &{}4\\ \end{array} \right] . \end{matrix} \end{aligned}$$

For the second term of (6.4), using the congruent transformation \(Z=M_0Q\), we have

$$\begin{aligned} Z^TDZ=Q^T{\widetilde{D}}Q, \end{aligned}$$

where \({\widetilde{D}}=M_0^TDM_0\) is a symmetric positive definite matrix, and \(\lambda _{\min }^2\ge 3.65\times 10^{-2}\).

Therefore, we obtain

$$\begin{aligned} I^1_{K_{ij}}(u_h,\varPi _h^*u_h)= & {} h_x^{i}h_y^{j}\min \left\{ \lambda _{\min }^1,\lambda _{\min }^2\right\} (P^2+T^2+Q^2)\\\ge & {} C|u_h|_{2,h,K_{ij}}^2. \end{aligned}$$

Distinctly, the stability of \(I_{K_{ij}}^1(u_h,\varPi _h^*u_h)\) is independent of the length-width ratio of rectangular elements.

Proof of the local stability (3.19).

The proof is similar with the proof of (3.16). We have

$$\begin{aligned} I^2_{K_{ij}}(u_h,\varPi _h^*u_h) =&\sum _{P\in \mathring{K}_{ij}} \left[ u_h(P)a^K_2(u_h,\psi _{P}^{(0)})+\left( \frac{\partial u_h}{\partial x}\right) (P)a^K_2(u_h,\psi _{P}^{(1)})\right. \nonumber \\&\left. \quad + \left( \frac{\partial u_h}{\partial y}\right) (P)a^K_2(u_h,\psi _{P}^{(2)})+\left( \frac{\partial u_h}{\partial x\partial y}\right) (P) a^K_2(u_h,\psi _{P}^{(3)})\right] , \end{aligned}$$
(6.5)

where

$$\begin{aligned}&a^K_2(u_h,\psi _{P}^{(0)})= -\int _{\partial K^*_P\cap K_{ij}}\frac{\partial u_h}{\partial {\mathbf {n}}}\psi _{P}^{(0)}ds,\\&a^K_2(u_h,\psi _{P}^{(1)})=-\int _{\partial K^*_P\cap K_{ij}}\frac{\partial u_h}{\partial {\mathbf {n}}}\psi _{P}^{(1)}ds +\int _{K^*_{P}\cap K_{ij}}\frac{\partial u_h}{\partial x}dxdy,\\&a^K_2(u_h,\psi _{P}^{(2)})=-\int _{\partial K^*_P\cap K_{ij}}\frac{\partial u_h}{\partial {\mathbf {n}}}\psi _{P}^{(3)}ds +\int _{K^*_{P}\cap K_{ij}}\frac{\partial u_h}{\partial y}dxdy,\\&a^K_2(u_h,\psi _{P}^{(3)})=-\int _{\partial K^*_P\cap K_{ij}}\frac{\partial u_h}{\partial {\mathbf {n}}}\psi _{P}^{(4)}ds +\int _{K^*_{P}\cap K_{ij}}\frac{\partial u_h}{\partial x}(y-y_P)+\frac{\partial u_h}{\partial y}(x-x_P)dxdy, \end{aligned}$$

Through some linear combinations of function values and derivative values of \(u_h\), we get

$$\begin{aligned}&I^2_{K_{ij}}(u_h,\varPi _h^*u_h)\\&\quad =h_x^{i}h_y^{j}\left[ e_1c_{11}+ e_2\left( c_{18}-\frac{1}{2}c_{11}\right) +e_3(c_{17}-c_{18}) +e_4c_{12}+e_5\left( c_{20}-\frac{1}{2}c_{12}\right) +e_6(c_{19}-c_{20})\right. \\&\qquad +\left. e_7c_{21}+e_8\left( c_{29}-\frac{1}{2}c_{21}\right) +e_9(c_{27}-c_{29})+e_{10}c_{23} +e_{11}\left( c_{33}-\frac{1}{2}c_{23}\right) +e_{12}(c_{31}-c_{33})\right. \\&\qquad +\left. f_1c_{13}+f_2\left( c_{22}-\frac{1}{2}c_{13}\right) +f_3(c_{24}-c_{22})+f_4c_{14}+f_5(c_{26}-\frac{1}{2}c_{14}) +f_6(c_{25}-c_{26})\right. \\&\qquad \left. +f_7c_{15}+f_8\left( c_{32}-\frac{1}{2}c_{15}\right) + f_9(c_{28}-c_{32})+f_{10}c_{16}+f_{11} \left( c_{34}-\frac{1}{2}c_{16}\right) + f_{12}(c_{30}-c_{34}) \right] \\&\quad =h_x^{i}h_y^{j}\left[ E^TJE+F^TJF\right] , \end{aligned}$$

where

$$\begin{aligned}&c_{11}=\int _0^{\frac{1}{2}}\frac{\partial u_h}{\partial x}d\eta ,~ c_{12}=\int _0^{\frac{1}{2}}\int _{\frac{1}{2}}^1\frac{\partial u_h}{\partial x}d\xi d\eta ,~\\&c_{13}=\int _0^{\frac{1}{2}}\int _0^{\frac{1}{2}}\frac{\partial u_h}{\partial x}d\xi d\eta ,~ c_{14}=\int _{\frac{1}{2}}^1\frac{\partial u_h}{\partial x}d\eta ,\\&c_{15}=\int _{\frac{1}{2}}^1\int _{\frac{1}{2}}^1\frac{\partial u_h}{\partial x}d\xi d\eta ,~ c_{16}=\int _{\frac{1}{2}}^1\int _0^{\frac{1}{2}}\frac{\partial u_h}{\partial x}d\xi d\eta ,~ c_{17}=\int _0^{\frac{1}{2}}\frac{\partial u_h}{\partial x}\cdot \eta d\eta , \\&c_{18}=\int _0^{\frac{1}{2}}\int _{\frac{1}{2}}^1\frac{\partial u_h}{\partial x}\cdot \eta d\xi d\eta ,~ c_{19}=\int _0^{\frac{1}{2}}\int _0^{\frac{1}{2}}\frac{\partial u_h}{\partial x}\cdot \eta d\xi d\eta ,~ c_{20}=\int _{\frac{1}{2}}^1\frac{\partial u_h}{\partial x}\cdot (\eta -1) d\eta ,\\&c_{21}=\int _{\frac{1}{2}}^1\int _{\frac{1}{2}}^1\frac{\partial u_h}{\partial x}\cdot (\eta -1)d\xi d\eta ,~ c_{22}=\int _0^{\frac{1}{2}}\int _0^{\frac{1}{2}}\frac{\partial u_h}{\partial y}d\xi d\eta ,~\\&c_{23}=\int _{\frac{1}{2}}^1\int _0^{\frac{1}{2}}\frac{\partial u_h}{\partial x}\cdot (\eta -1)d\xi d\eta ,\\&c_{24}=\int _0^{\frac{1}{2}}\frac{\partial u_h}{\partial y}d\xi ,~ c_{25}=\int _{\frac{1}{2}}^1\int _0^{\frac{1}{2}}\frac{\partial u_h}{\partial y}d\xi d\eta ,~\\&c_{26}=\int _{\frac{1}{2}}^1\frac{\partial u_h}{\partial y}d\xi ,~ c_{27}=\int _{\frac{1}{2}}^1\int _{\frac{1}{2}}^1\frac{\partial u_h}{\partial y}d\xi d\eta ,\\&c_{28}=\int _0^{\frac{1}{2}}\int _{\frac{1}{2}}^1\frac{\partial u_h}{\partial y}d\xi d\eta ,~ c_{29}=\int _0^{\frac{1}{2}}\frac{\partial u_h}{\partial y}\cdot \xi d\xi ,~ \\&c_{30}=\int _{\frac{1}{2}}^1\int _0^{\frac{1}{2}}\frac{\partial u_h}{\partial y}\cdot \xi d\xi d\eta ,~ c_{31}=\int _0^{\frac{1}{2}}\int _0^{\frac{1}{2}}\frac{\partial u_h}{\partial y}\cdot \xi d\xi d\eta , \\&c_{32}=\int _{\frac{1}{2}}^1\frac{\partial u_h}{\partial y}\cdot (\xi -1) d\xi ,~ c_{33}=\int _{\frac{1}{2}}^1\int _{\frac{1}{2}}^1\frac{\partial u_h}{\partial y}\cdot (\xi -1) d\xi d\eta ,~\\&c_{34}=\int _0^{\frac{1}{2}}\int _{\frac{1}{2}}^1\frac{\partial u_h}{\partial y}\cdot (\xi -1) d\xi d\eta , \end{aligned}$$

and J is a real symmetric positive definite matrix and minimum eigenvalue is \(\lambda _{\min }^3\ge 1\times 10^{-4}\).

By (3.9), we get

$$\begin{aligned} I^2_{K_{ij}}(u_h,\varPi _h^*u_h)\ge C|u_h|_{1,h,K_{ij}}^2. \end{aligned}$$

Appendix D. The Specific Representation of \(\left| I_{K_{ij}}^1\right| \) and \(\left| I^2_{K_{ij}}\right| \)

$$\begin{aligned}&|I^1_{K_{ij}}(u-\varPi _hu,\varPi _h^*w_h)|\\&\quad =\varepsilon ^2\left| \sum _{l=1,3}\frac{h_x^i}{2}\left[ w^l_x+w^{l+1}_x-\frac{2}{h_x^i}(w^{l+1}-w^l)\right] \int _{\overline{M_lQ}} \sum _{m=0,2}\frac{\partial ^3(\varPi _hu-u)}{\partial x^{3-m}\partial y^m}dy\right. \\&\qquad +\left. \sum _{l=1,2}\frac{h_y^j}{2}\left[ w^{l}_y+w^{l+2}_y-\frac{2}{h_y^j}(w^{l+2}-w^{l})\right] \int _{\overline{M_{2l}Q}} \sum _{m=0,2}\frac{\partial ^3(\varPi _hu-u)}{\partial x^m\partial y^{3-m}}dx\right. \\&\qquad +\left. \sum _{l=1,3}\frac{h_x^i}{2}\left[ w^l_{xy}+w^{l+1}_{xy}-\frac{2}{h_x^i}(w^{l+1}_y-w^l_y)\right] \int _{\overline{M_lQ}} \sum _{m=0,2}\frac{\partial ^3(\varPi _hu-u)}{\partial x^{3-m}\partial y^m}(y-y_l)dy\right. \\&\qquad +\left. \sum _{l=1,2}\frac{h_y^j}{2}\left[ w^{l}_{xy}+w^{l+2}_{xy} -\frac{2}{h_y^j}(w^{l+2}_x-w^{l}_x)\right] \int _{\overline{M_{2l}Q}}\sum _{m=0,2}\frac{\partial ^3(\varPi _hu-u)}{\partial x^{m}\partial y^{3-m}}(x-x_{l})dx\right. \\&\qquad +\left. \sum _{l=1,3}(w^{l+1}_x-w^l_x)\int _{\overline{M_lQ}}\frac{\partial ^2(\varPi _hu-u)}{\partial x^2}dy+ \sum _{l=1,2}(w^{l+2}_y-w^l_y)\int _{\overline{M_{2l}Q}}\frac{\partial ^2(\varPi _hu-u)}{\partial y^2}dx\right. \\&\qquad +\left. \sum _{l=1,3}(w^{l+1}_y-w^l_y)\int _{\overline{M_lQ}}\frac{\partial ^2(\varPi _hu-u)}{\partial x\partial y}dy+ \sum _{l=1,2}(w^{l+2}_x-w^l_x)\int _{\overline{M_{2l}Q}}\frac{\partial ^2(\varPi _hu-u)}{\partial x\partial y}dx \right| \\&|I^2_{K_{ij}}(u-\varPi _hu,\varPi _h^*w_h)|\\&\quad =\left| \sum _{l=1,3}\left[ w^{l+1}-w^l-(w_x^{l+1}+w_x^l)h_x^i/2\right] \int _{\overline{M_lQ}}\frac{\partial (\varPi _hu-u)}{\partial x}dy\right. \\&\qquad +\left. \sum _{l=1,2}\left[ w^{l+2}-w^l-(w_y^{l+2}+w_y^l)h_y^j/2\right] \int _{\overline{M_lQ}}\frac{\partial (\varPi _hu-u)}{\partial y}dx\right. \\&\qquad +\left. \sum _{l=1,3}\left[ w_y^{l+1}-w_y^l-(w_{xy}^{l+1}+w_{xy}^l)h_x^i/2\right] \int _{\overline{M_lQ}}\frac{\partial (\varPi _hu-u)}{\partial x}(y-y_l)dy\right. \\&\qquad +\left. \sum _{l=1,2}\left[ w_x^{l+2}-w_x^l-(w_{xy}^{l+2}+w_{xy}^l)h_y^j/2\right] \int _{\overline{M_lQ}}\frac{\partial (\varPi _hu-u)}{\partial y}(x-x_l)dy\right. \\&\qquad +\left. \sum _{l=1}^4w_{xy}^l\int _{K^l_{ij}}\frac{\partial (\varPi _hu-u)}{\partial x}(y-y_l)+ \frac{\partial (\varPi _hu-u)}{\partial y}(x-x_l)dxdy\right| . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Meng, X. & Li, Y. The Bogner-Fox-Schmit Element Finite Volume Methods on the Shishkin Mesh for Fourth-Order Singularly Perturbed Elliptic Problems. J Sci Comput 93, 4 (2022). https://doi.org/10.1007/s10915-022-01969-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01969-7

Keywords

Mathematics Subject Classification

Navigation