Skip to main content
Log in

A Second-order Modified Ghost Fluid Method (2nd-MGFM) with Discontinuous Galerkin Method for 1-D compressible Multi-medium Problem with Cylindrical and Spherical Symmetry

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we develop the discontinuous Galerkin method to simulate 1-D cylindrical and spherical compressible multi-medium flows with an immiscible interface. To treat the interface with higher-order accuracy, the modified ghost fluid method is extended to a second-order version with source terms, in which linearly distributed ghost fluid states are constructed. A multi-medium generalized Riemann problem with the geometrical source is constructed to predict the states and the spatial derivatives at the interface. The predicted interface states and spatial derivatives are then employed to define the linearly distributed ghost fluid states. Theoretical analysis shows that the proposed second-order modified ghost fluid method (2nd-MGFM) can effectively eliminate the first order major error term occurring to the interface and accumulating with time when there is interface acceleration. Numerical results exhibit the proposed 2nd-MGFM can suppress overheating at the accelerating wall and pressure dislocation at the accelerating interface very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125(1), 150–160 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169(2), 594–623 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow 12(6), 861–889 (1986)

    MATH  Google Scholar 

  4. Barton, P.T., Drikakis, D.: An Eulerian method for multi-component problems in non-linear elasticity with sliding interfaces. J. Comput. Phys. 229(15), 5518–5540 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Ben-Artzi, M., Li, J., Warnecke, G.: A direct Eulerian GRP scheme for compressible fluid flows. J. Comput. Phys. 218(1), 19–43 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Bo, W., Grove, J.W.: A volume of fluid method based ghost fluid method for compressible multi-fluid flows. Computers & Fluids 90, 113–122 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Cheng, J., Zhang, F., Liu, T.: A discontinuous Galerkin method for the simulation of compressible gas-gas and gas-water two-medium flows. J. Comput. Phys. 403, 109059 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Courant, R., Friedrichs, K.O.: Supersonic flow and shock waves, vol. 21. Springer Science & Business Media (1999)

  11. Fedkiw, R.P.: Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput. Phys. 175(1), 200–224 (2002)

    MATH  Google Scholar 

  12. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Feng, C.L., Liu, T.G., Xu, L., Yu, C.S.: Modified ghost fluid method with axisymmetric source correction (mgfm/asc). Commun. Comput. Phys 28, 621–660 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Feng, Z., Rong, J., Kaboudian, A., Khoo, B.C.: The Modified Ghost Method for Compressible Multi-Medium Interaction with Elastic-Plastic Solid. Communications in Computational Physics 22(5), 1258–1285 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Feng, Z.W., Kaboudian, A., Rong, J.L., Khoo, B.C.: The simulation of compressible multi-fluid multi-solid interactions using the modified ghost method. Computers & Fluids 154, 12–26 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Gao, S., Liu, T.: 1D Exact elastic-perfectly plastic solid Riemann solver and its multi-material application. Adv. Appl. Math. Mech. 9(3), 621–650 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Gao, S., Liu, T., Yao, C.: A complete list of exact solutions for one-dimensional elastic-perfectly plastic solid Riemann problem without vacuum. Commun. Nonlinear Sci. Numer. Simul. 63, 205–227 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Glimm, J., Marchesin, D., McBryan, O.: Subgrid resolution of fluid discontinuities. II. J. Comput. Phys. 37(3), 336–354 (1980)

    MathSciNet  MATH  Google Scholar 

  19. Glimm, J., Marchesin, D., McBryan, O.: A numerical method for two phase flow with an unstable interface. J. Comput. Phys. 39(1), 179–200 (1981)

    MathSciNet  MATH  Google Scholar 

  20. Hu, X.Y., Khoo, B.C.: An interface interaction method for compressible multifluids. J. Comput. Phys. 198(1), 35–64 (2004)

    MATH  Google Scholar 

  21. Jenny, P., Müller, B., Thomann, H.: Correction of conservative Euler solvers for gas mixtures. J. Comput. Phys. 132(1), 91–107 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219(2), 715–732 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations. Phys. Fluids 13(10), 3002–3024 (2001)

    MATH  Google Scholar 

  24. Karni, S.: Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112(1), 31–43 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Karni, S.: Hybrid multifluid algorithms. SIAM J. Sci. Comput. 17(5), 1019–1039 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Kaufman, R., Lim, H., Glimm, J.: Conservative front tracking: the algorithm, the rationale and the API. Bulletin of the Institute of Mathematics 11, 115–130 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Kolgan, V.P.: Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics. J. Comput. Phys. 230(7), 2384–2390 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Larrouturou, B.: How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95(1), 59–84 (1991)

    MathSciNet  MATH  Google Scholar 

  29. Li, J., Liu, T., Sun, Z.: Implementation of the GRP scheme for computing radially symmetric compressible fluid flows. J. Comput. Phys. 228(16), 5867–5887 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Lin, J.-Y., Shen, Y., Ding, H., Liu, N.-S., Xi-Yun, L.: Simulation of compressible two-phase flows with topology change of fluid-fluid interface by a robust cut-cell method. J. Comput. Phys. 328, 140–159 (2017)

    MathSciNet  Google Scholar 

  31. Liu, C., Changhong, H.: A second order ghost fluid method for an interface problem of the Poisson equation. Communications in Computational Physics 22(4), 965–996 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Liu, T.G., Khoo, B.C., Wang, C.W.: The ghost fluid method for compressible gas-water simulation. J. Comput. Phys. 204(1), 193–221 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Liu, T.G., Khoo, B.C., Xie, W.F.: The modified ghost fluid method as applied to extreme fluid-structure interaction in the presence of cavitation. Commun. Comput. Phys. 1(5), 898–919 (2006)

    MATH  Google Scholar 

  34. Liu, T.G., Khoo, B.C., Yeo, K.S.: The simulation of compressible multi-medium flow. I. A new methodology with test applications to 1D gas-gas and gas-water cases. Computers & fluids 30(3), 291–314 (2001)

    MATH  Google Scholar 

  35. Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190(2), 651–681 (2003)

    MATH  Google Scholar 

  36. Liu, T.G., Xie, W.F., Khoo, B.C.: The modified ghost fluid method for coupling of fluid and structure constituted with hydro-elasto-plastic equation of state. SIAM J. Sci. Comput. 30(3), 1105–1130 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Liu, T., Feng, C., Liang, X.: Modified ghost fluid method with acceleration correction (MGFM/AC). J. Sci. Comput. 81(3), 1906–1944 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Liu, Y.-L., Shu, C.-W., Zhang, A.-M.: Weighted ghost fluid discontinuous Galerkin method for two-medium problems. J. Comput. Phys. 426, 109956 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Haitian, L., Zhu, J., Wang, C., Wang, D., Zhao, N.: A Riemann problem based method for solving compressible and incompressible flows. J. Comput. Phys. 330, 1–20 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Men’shov, I.S.: Increasing the order of approximation of godunov’s scheme using solutions of the generalized riemann problem. USSR Comput. Math. Math. Phys. 30(5), 54–65 (1990)

    MATH  Google Scholar 

  41. Nourgaliev, R.R., Dinh, T.-N., Theofanous, T.G.: Adaptive characteristics-based matching for compressible multifluid dynamics. J. Comput. Phys. 213(2), 500–529 (2006)

    MATH  Google Scholar 

  42. Pandare, A.K., Waltz, J., Bakosi, J.: A reconstructed discontinuous Galerkin method for multi-material hydrodynamics with sharp interfaces. Int. J. Numer. Meth. Fluids 92(8), 874–898 (2020)

    MathSciNet  Google Scholar 

  43. Qian, J., Li, J., Wang, S.: The generalized riemann problems for compressible fluid flows: Towards high order. J. Comput. Phys. 259, 358–389 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Qiu, J., Liu, T.G., Khoo, B.C., et al.: Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the ghost fluid method. Communications in Computational Physics 3(2), 479–504 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Rodionov, Alexander V.: Short note: Complement to the ” kolgan project.” Journal of Computational Physics 231(13), 4465–4468 (2012)

  46. Sambasivan, S.K., UdayKumar, H.S.: Ghost fluid method for strong shock interactions part 1: Fluid-fluid interfaces. AIAA J. 47(12), 2907–2922 (2009)

    Google Scholar 

  47. Shyue, K.-M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142(1), 208–242 (1998)

    MathSciNet  MATH  Google Scholar 

  48. Shyue, K.-M.: A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. J. Comput. Phys. 156(1), 43–88 (1999)

    MathSciNet  MATH  Google Scholar 

  49. Shyue, K.-M.: A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state. J. Comput. Phys. 171(2), 678–707 (2001)

    MathSciNet  MATH  Google Scholar 

  50. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    MATH  Google Scholar 

  51. Toro, E.F.: Primitive, conservative and adaptive schemes for hyperbolic conservation laws. In: Numerical methods for wave propagation, pp. 323–385. Springer (1998)

  52. Toro, E.F., Titarev, V.A.: Solution of the generalized riemann problem for advection-reaction equations. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458(2018), 271–281 (2002)

  53. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media (2013)

  54. Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100(1), 25–37 (1992)

    MATH  Google Scholar 

  55. Van Brummelen, E.H., Koren, B.: A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows. J. Comput. Phys. 185(1), 289–308 (2003)

    MathSciNet  MATH  Google Scholar 

  56. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    MATH  Google Scholar 

  57. Wang, C.W., Liu, T.G., Khoo, B.C.: A real ghost fluid method for the simulation of multimedium compressible flow. SIAM J. Sci. Comput. 28(1), 278–302 (2006)

    MathSciNet  MATH  Google Scholar 

  58. Liang, X., Feng, C., Liu, T.: Practical techniques in ghost fluid method for compressible multi-medium flows. Communications in Computational Physics 20(3), 619–659 (2016)

    MathSciNet  MATH  Google Scholar 

  59. Liang, X., Liu, T.: Accuracies and conservation errors of various ghost fluid methods for multi-medium Riemann problem. J. Comput. Phys. 230(12), 4975–4990 (2011)

    MathSciNet  MATH  Google Scholar 

  60. Liang, X., Liu, T.: Modified ghost fluid method as applied to fluid-plate interaction. Adv. Appl. Math. Mech. 6(1), 24–48 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported under the Science Challenge Project (No. JCKY2016212A502), the National Natural Science Foundation of China (Nos. U1730118 and 12101029) and Postdoctoral Science Foundation of China (No. 2020M680283).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengliang Feng.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Basic Differential Relations for Multi-medium GRP with the Geometrical Source

Fig. 11
figure 11

Wave pattern of the multi-medium GRP with the geometrical source (20)

According to the Riemann invariants \(\psi \) and \(\phi \) corresponding to \(\lambda _{-}=u-c\) and \(\lambda _{+}=u+c\) waves as Fig. 11, we have

$$\begin{aligned} \begin{aligned} d \psi =d u+\frac{1}{\rho c} d p+\frac{1}{c} T d S,\quad d \phi =d u-\frac{1}{\rho c} d p-\frac{1}{c} T d S. \end{aligned} \end{aligned}$$
(52)

Combining with (4), we obtain

$$\begin{aligned} \begin{aligned} \frac{D\psi }{Dt}=\frac{Du}{Dt}+\frac{1}{\rho c} \frac{Dp}{Dt},\quad \frac{D\phi }{Dt}=\frac{Du}{Dt}-\frac{1}{\rho c} \frac{Dp}{Dt}. \end{aligned} \end{aligned}$$
(53)

Thus, for the state ahead of the left characteristic waves \(\lambda _{-}=u-c\) and the state ahead of the right characteristic waves \(\lambda _{+}=u+c\), with simple manipulation,

$$\begin{aligned} \begin{aligned}&\left( \frac{D\psi }{Dt}\right) _L=\left( \frac{Du}{Dt}\right) _L+\frac{1}{\rho _L c_L} \left( \frac{Dp}{Dt}\right) _L=-\frac{1}{\rho _{L}} p_{L}^{\prime }-c_{L} u_{L}^{\prime }-\frac{m-1}{x_{c d}} c_{L} u_{L},\\&\left( \frac{D\phi }{Dt}\right) _R=\left( \frac{Du}{Dt}\right) _R-\frac{1}{\rho _R c_R} \left( \frac{Dp}{Dt}\right) _R=-\frac{1}{\rho _{R}} p_{R}^{\prime }+c_{R} u_{R}^{\prime }+\frac{m-1}{x_{cd}} c_{R} u_{R}, \end{aligned} \end{aligned}$$
(54)

which is only related to the initial value \(({{{\varvec{U}}}_{L}},{{{\varvec{U}}}^{\prime }_{L}}, {{{\varvec{U}}}_{R}}\), \({{{\varvec{U}}}^{\prime }_{R}})\). According to boundary conditions Theorem 1, there is

$$\begin{aligned} \left( \frac{Du}{Dt} \right) _{*}=\left( \frac{Du}{Dt} \right) _{1*}=\left( \frac{Du}{Dt} \right) _{2*},\quad \left( \frac{Dp}{Dt} \right) _{*}=\left( \frac{Dp}{Dt} \right) _{1*}=\left( \frac{Dp}{Dt} \right) _{2*}. \end{aligned}$$
(55)

For a general EOS \(e=e(\rho ,p)\), (5) can be written as

$$\begin{aligned} TdS=\frac{\partial e}{\partial p}dp+(\frac{\partial e}{\partial \rho } -\frac{p}{\rho ^2})d\rho \end{aligned}$$
(56)

In particular, for the EOS (2), (5) can be written as

$$\begin{aligned} TdS = \frac{1}{(\gamma -1)\rho }dp-\frac{c^2}{(\gamma -1)\rho }d{\rho }. \end{aligned}$$
(57)

As described, we can get instantaneous predicted state \({\varvec{U}}({{\rho }_{1*}},{{u}_{1*}},{{p}_{1*}})\), \({\varvec{U}}({{\rho }_{2*}},{{u}_{2*}},{{p}_{2*}})\) via solving the multi-medium Riemann problem (19).

Proof of Theorem 4

We have the following approximation:

$$\begin{aligned} \left( \frac{D\psi }{Dt}\right) _{1*} = \left( \frac{D\psi }{Dt}\right) _{L},\quad \left( \frac{D\phi }{Dt}\right) _{2*} = \left( \frac{D\phi }{Dt}\right) _{R}. \end{aligned}$$
(58)

Thus, (39) and (40) can be obtained by combining (53), (54), (55), (58).

Under approximation (58), there is

$$\begin{aligned} \begin{aligned} (TdS)_{1*}=(TdS)_{L},\quad (TdS)_{2*}=(TdS)_{R},\\ \end{aligned} \end{aligned}$$
(59)

(41) is obtained.

In particular, (41) can be written as (42) for the EOS (2) specifically.

Proof of Theorem 5

Here, assuming that the solution model is a double rarefaction wave structure.

According to [29], the material derivative of \(\psi \) corresponding to the state behind of left characteristic wave \(\lambda _{-}=u-c\) satisfies

$$\begin{aligned} \left( \frac{D\psi }{Dt}\right) _{1*}&\!=\!\left[ \frac{1+\mu _1^{2}}{1+2 \mu _1^{2}}\left( \frac{c_{1 *}}{c_{L}}\right) ^{1 /\left( 2 \mu _1^{2}\right) }+\frac{\mu _1^{2}}{1+2 \mu _1^{2}}\left( \frac{c_{1 *}}{c_{L}}\right) ^{\left( 1+\mu _1^{2}\right) / \mu _1^{2}}\right] T_{L} S_{L}^{\prime }-c_{L}\left( \frac{c_{1*}}{c_{L}}\right) ^{1 /\left( 2 \mu _1^{2}\right) } \psi _{L}^{\prime }\nonumber \\&\quad +\frac{m-1}{2 x_{cd}} c_{1 *}\left[ Z_{L}\left( c_{1 *}\right) -u_{*}-\left( \frac{c_{1*}}{c_{L}}\right) ^{\frac{1-2 \mu _1^{2}}{2 \mu _1^{2}}} u_{L}\right] , \end{aligned}$$
(60)

where, \(\mu _1^{2}=\frac{\gamma _1-1}{\gamma _1+1}\), and

$$\begin{aligned} Z_{L}\left( c_{1^{*}}\right) =\left\{ \begin{array}{ll} c_{L}-c_{1^{*}}+\log \left( \frac{c_{1^{*}}}{c_{L}}\right) \left( u_{L}+\frac{2 c_{L}}{\gamma _1-1}\right) , &{}\gamma _1=3, \\ -2\left[ 3 c_{1*} \log \left( \frac{c_{1 *}}{c_{L}}\right) +\left( 1-\frac{c_{1 *}}{c_{L}}\right) \left( u_{L}+\frac{2 c_{L}}{\gamma _1-1}\right) \right] , &{} \gamma _1=\frac{5}{3}.\\ \frac{\left( \mu _1^{2}-1\right) c_{1 *}}{\mu _1^{2}\left( 4 \mu _1^{2}-1\right) }\left[ 1-\left( \frac{c_{1 *}}{c_{L}}\right) ^{\frac{1-4 \mu _1^{2}}{2 \mu _1^{2}}}\right] +\frac{\left( u_{L}+\frac{2 c_{L}}{\gamma _1-1}\right) }{2 \mu _1^{2}-1}\left[ 1-\left( \frac{c_{1 *}}{c_{L}}\right) ^{\frac{1-2 \mu _1^{2}}{2 \mu _1^{2}}}\right] , &{} \gamma _1\ne 3 \quad and\\ &{}\gamma _1\ne \frac{5}{3}. \end{array}\right. \end{aligned}$$
(61)

Setting \(\xi =\frac{c_{1 *}}{c_{L}}-1\), we approximately have

$$\begin{aligned} \left( \frac{D \psi }{D t}\right) _{1 *}=-\frac{1}{\rho _{L}} p_{L}^{\prime }-c_{L} u_{L}^{\prime }-\frac{m-1}{x_{c d}} c_{L} u_{L}+Q_{1} \xi +O\left( \xi ^2\right) , \end{aligned}$$
(62)

via Taylor series expansion. Here,

$$\begin{aligned} Q_{1}=\frac{1}{2 \mu _1^{2}}\left[ -\frac{\gamma _1}{\gamma _1+1} \frac{\rho _{L} p_{L}^{\prime }+p_{L} \rho _{L}^{\prime }}{\rho _{L}^{2}}-u_{L}^{\prime } c_{L}+\frac{m-1}{2 x_{cd}}\left( -2 \mu _1^{2} u_{L} c_{L}+\frac{4 c_{L}^{2}}{\gamma _1+1}\right) \right] . \end{aligned}$$
(63)

Similarly, setting \(\eta = \frac{c_{2 *}}{c_{R}}-1\), the material derivative of \(\phi \) corresponding to the state of behind of the right characteristic wave \(\lambda _{+}=u+c\) satisfies

$$\begin{aligned} \left( \frac{D\phi }{Dt}\right) _{2*} =-\frac{1}{\rho _{R}} p_{R}^{\prime }+c_{R} u_{R}^{\prime }+\frac{m-1}{x_{cd}} c_{R} u_{R}+Q_{2} \eta +O\left( \eta ^2\right) , \end{aligned}$$
(64)

where,

$$\begin{aligned} Q_{2}=\frac{1}{2\mu _2^{2}}\left[ -\frac{\gamma _2}{\gamma _2+1} \frac{\rho _{R} p_{R}^{\prime }+p_{R} \rho _{R}^{\prime }}{\rho _{R}^{2}}+u_{R}^{\prime } c_{R}+\frac{m-1}{2 x_{cd}}\left( 2 \mu _2^{2} u_{R} c_{R}+\frac{4 c_{R}^{2}}{\gamma _2+1}\right) \right] , \end{aligned}$$
(65)

and \(\mu _2^{2}=\frac{\gamma _2-1}{\gamma _2+1}\). As a result of (53), (54), (55), (62), (64), we obtain

$$\begin{aligned} \begin{aligned}&\left( \frac{Du}{Dt}\right) _{1*}+\frac{1}{\rho _{1*} c_{1*}}\left( \frac{Dp}{Dt}\right) _{1*}=\left( \frac{D\psi }{Dt}\right) _{1*}=\left( \frac{D\psi }{Dt}\right) _{L}+Q_{1} \xi +O\left( \xi ^{2}\right) ,\\&\left( \frac{Du}{Dt}\right) _{2*}-\frac{1}{\rho _{2*} c_{2*}}\left( \frac{Dp}{Dt}\right) _{2*}=\left( \frac{D\phi }{Dt}\right) _{2*}=\left( \frac{D\phi }{Dt}\right) _{R}+Q_{2} \eta +O\left( \eta ^{2}\right) . \end{aligned} \end{aligned}$$
(66)

Solving above systems, we obtain the acceleration (material derivative), \( {u}_{a}=\left( \frac{Du}{Dt} \right) _{*}=\left( \frac{Du}{Dt} \right) _{1*}=\left( \frac{Du}{Dt} \right) _{2*}\) and \( {p}_{a}=\left( \frac{Dp}{Dt} \right) _{*}=\left( \frac{Dp}{Dt} \right) _{1*}=\left( \frac{Dp}{Dt} \right) _{2*}\), of the velocity and pressure at the interface \(x=x_{cd}(t_0)\). Using (4), we can get the spatial derivatives of velocity and pressure at the interface

$$\begin{aligned} \begin{aligned} \begin{array}{ll} p^{\prime }_{1*}=-{{\rho }_{1*}}{{u}_{a}},\\ \left( x_{cd}^{m-1}u\right) ^{\prime }_{1*}=-\frac{{{p}_{a}}}{{{\rho }_{1*}}c_{1*}^{2}} x_{cd}^{m-1},\\ \end{array}\quad \begin{array}{ll} p^{\prime }_{2*}=-{{\rho }_{2*}}{{u}_{a}},\\ \left( x_{cd}^{m-1}u\right) ^{\prime }_{2*}=-\frac{p_a}{\rho _{2*}c_{2*}^{2}} x_{cd}^{m-1}.\\ \end{array} \end{aligned} \end{aligned}$$
(67)

To obtain the spatial derivative of density at the interface for the EOS (2), we follow the method developed in [29] and have

$$\begin{aligned} \begin{aligned} (TdS)_{1*}=\left( \frac{c_{1*}}{c_L}\right) ^{(1+\mu _1^2)/\mu _1^2}(TdS)_{L},\quad (TdS)_{2*}=\left( \frac{c_{2*}}{c_R}\right) ^{(1+\mu _2^2)/\mu _2^2}(TdS)_{R}, \end{aligned} \end{aligned}$$
(68)

which can be written as

$$\begin{aligned} \begin{aligned} (TdS)_{1*}=\left( 1+\frac{1+\mu _1^2}{\mu _1^2}\xi +O\left( \xi ^2\right) \right) (TdS)_{L},\\ (TdS)_{2*}=\left( 1+\frac{1+\mu _2^2}{\mu _2^2}\eta +O\left( \eta ^2\right) \right) (TdS)_{R}. \end{aligned} \end{aligned}$$
(69)

Based on (57), we thus have

$$\begin{aligned} \begin{aligned} \rho ^{\prime }_{1*}&=\frac{1}{{c_{1*}^{2}}}\left[ {p^{\prime }_{1*}}-\left( 1+\frac{1+\mu _1^2}{\mu _1^2}\xi +O\left( \xi ^2\right) \right) \frac{{\rho }_{1*}}{{\rho }_{L} } ({p^{\prime }_L}-{c^{2}_L}{\rho ^{\prime }_L} ) \right] , \\ \rho ^{\prime }_{2*}&=\frac{1}{{c_{2*}^{2}}}\left[ {p^{\prime }_{2*}}-\left( 1+\frac{1+\mu _2^2}{\mu _2^2}\eta +O\left( \eta ^2\right) \right) \frac{{\rho }_{2*}}{{\rho }_{R} } ({p^{\prime }_R}-{c^{2}_R}{\rho ^{\prime }_R}) \right] . \end{aligned} \end{aligned}$$
(70)

Finally, (43) can be obtained with (67) and (70).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, T., Yu, C. et al. A Second-order Modified Ghost Fluid Method (2nd-MGFM) with Discontinuous Galerkin Method for 1-D compressible Multi-medium Problem with Cylindrical and Spherical Symmetry. J Sci Comput 93, 14 (2022). https://doi.org/10.1007/s10915-022-01975-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01975-9

Keywords

Navigation