Skip to main content
Log in

Inertial Version of Generalized Projected Reflected Gradient Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper studies a generalized version of projected reflected gradient method coupled with inertial extrapolation step to solve variational inequalities in Hilbert spaces. Our proposed method requires one function evaluation and one projection per iteration alongside inertial extrapolation step which is motivated by the desire to devise faster and less computationally expensive iterative methods for variational inequalities. We obtain weak and linear convergence of the sequence of iterates generated by our method under some standard conditions and numerical results are given to show the efficacy of the proposed iterative scheme. Several versions of recently proposed projected reflected gradient methods in the literature are recovered from our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Alt, W., Baier, R., Gerdts, M., Lempio, F.: Error bounds for Euler approximation of linear-quadratic control problems with bang–bang solutions. Numer. Algebra Control Optim. 2, 547–570 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  3. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities; Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics. Springer, New York (2011)

    MATH  Google Scholar 

  5. Bressan, B., Piccoli, B.: Introduction to the Mathematical Theory of Control, AIMS Series on Applied Mathematics (2007)

  6. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Meth Softw. 26, 827–845 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, X., Liu, S., Deng, Z., Li, S.: An inertial subgradient extragradient algorithm with adaptive step sizes for variational inequality problems. Optim. Methods Soft. (2021). https://doi.org/10.1080/10556788.2021.1910946

    Article  Google Scholar 

  10. Dong, Q.L., He, S., Liu, L.: A general inertial projected gradient method for variational inequality problems. Comput. Appl. Math. 40, 168 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fan, J., Liu, L., Qin, X.: A subgradient extragradient algorithm with inertial effects for solving strongly pseudomonotone variational inequalities. Optimization 69, 2199–2215 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fichera, G.: Sul pproblem elastostatico di signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 34: 138-142 (1963)

  13. Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  14. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  15. Harker, P.T., Pang, J.-S.: A damped-Newton method for the linear complementarity problem. In: Allgower, G., Georg, K. (eds.) Computational Solution of Nonlinear Systems of Equations, Lectures in Applied Mathematics, vol. 26, pp. 265–284. RI, AMS, Providence (1990)

    Google Scholar 

  16. Khobotov, E.N.: Modification of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1989)

    Article  MATH  Google Scholar 

  17. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  18. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomika i Mat. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  19. Maingé, P.-E.: Numerical approach to monotone variational inequalities by a one-step projected reflected gradient method with line-search procedure. Comput. Math. Appl. 72(3), 720–728 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maingé, P.-E., Gobinddass, M.L.: Convergence of one-step projected gradient methods for variational inequalities. J. Optim. Theory Appl. 171, 146–168 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Malitsky, Y.: Golden ratio algorithms for variational inequalities. Math. Program. 184, 383–410 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Malitsky, Yu.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Malitsky, Y.V., Semenov, V.V.: An extragradient algorithm for monotone variational inequalities. Cybern. Syst. Anal. 50, 271–277 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Malitsky, Y., Tam, M.K.: A forward-backward splitting method for monotone inclusions without cocoercivity. SIAM J. Optim. 30, 1451–1472 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Malitsky, Yu.V., Semenov, V.V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Global Optim. 61, 193–202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thong, D.V., Gibali, A., Vuong, P.T.: An explicit algorithm for solving monotone variational inequalities. Appl. Numer. Math. 171, 408–425 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nagurney, A.: Network Economics: A Variational Inequality Approach. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  28. Popov, L.D.: A modification of the Arrow–Hurwicz method for finding saddle points. Math. Notes 28, 845–848 (1980)

    Article  MATH  Google Scholar 

  29. Preininger, J., Vuong, P.T.: On the convergence of the gradient projection method for convex optimal control problems with bang–bang solutions. Comput. Optim. Appl. 70, 221–238 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shehu, Y., Iyiola, O.S., Reich, S.: A modified inertial subgradient extragradient method for solving variational inequalities. Optim. Eng. 23, 421–449 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shehu, Y., Iyiola, O.S.: Projection methods with alternating inertial steps for variational inequalities: weak and linear convergence. Appl. Numer. Math. 157, 315–337 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stampacchia, G.: Variational inequalities. In: Theory and Applications of Monotone Operators,Proceedings of the NATO Advanced Study Institute, Venice, Italy (Edizioni Odersi, Gubbio, Italy, 1968), pp. 102–192

  33. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  34. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control. Optim. 38, 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Thong, D.V., Li, X.H., Dong, Q.L., Cho, Y.J., Rassias, T.M.: An inertial Popov’s method for solving pseudomonotone variational inequalities. Optim. Lett. 15, 757–777 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Thong, D.V., Van Hieu, D., Rassias, T.M.: Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems. Optim. Lett. 14, 115–144 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Thong, D.V., Hieu, D.V.: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 341, 80–98 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tian, M., Tong, M.: Self-adaptive subgradient extragradient method with inertial modification for solving monotone variational inequality problems and quasi-nonexpansive fixed point problems. J. Inequal. Appl., Paper No. 7 (2019)

  39. Van Hieu, D., Anh, P.K., Muu, L.D.: Modified forward–backward splitting method for variational inclusions. 4OR-Q J. Oper. Res. 19, 127–151 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vuong, P.T., Shehu, Y.: Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer. Algorithms 81, 269–291 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, J.: Self-adaptive inertial subgradient extragradient algorithm for solving pseudomonotone variational inequalities. Appl. Anal. 100, 1067–1078 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang, J., Liu, H., Liu, Z.: Modified Subgradient extragradient algorithms for solving monotone variational inequalities. Optimization 67, 2247–2258 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, J., Liu, H.: A modified projected gradient method for monotone variational inequalities. J. Optim. Theory Appl. 179, 197–211 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the comments and suggestions of the referee and the handling editor which have improved on the earlier version of the paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekini Shehu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Code availability

The Matlab codes employed to run the numerical experiments are available upon request to the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyiola, O.S., Shehu, Y. Inertial Version of Generalized Projected Reflected Gradient Method. J Sci Comput 93, 24 (2022). https://doi.org/10.1007/s10915-022-01989-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01989-3

Keywords

Mathematics Subject Classification

Navigation