Skip to main content
Log in

Tensor Completion via A Generalized Transformed Tensor T-Product Decomposition Without t-SVD

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Matrix and tensor nuclear norms have been successfully used to promote the low-rankness of tensors in low-rank tensor completion. However, singular value decomposition (SVD), which is computationally expensive for large-scale matrices, frequently appears in solving those nuclear norm minimization models. Based on the tensor-tensor product (T-product), in this paper, we first establish the equivalence between the so-called transformed tubal nuclear norm for a third-order tensor and the minimum of the sum of two factor tensors’ squared Frobenius norms under a general invertible linear transform. Gainfully, we introduce a mode-unfolding (often named as “spatio-temporal” in the internet traffic data recovery literature) regularized tensor completion model that is able to efficiently exploit the hidden structures of tensors. Then, we propose an implementable alternating minimization algorithm to solve the underlying optimization model. It is remarkable that our approach does not require any SVDs and all subproblems of our algorithm enjoy closed-form solutions. A series of numerical experiments on traffic data recovery, color images and videos inpainting demonstrate that our SVD-free approach takes less computing time to achieve satisfactory accuracy than some state-of-the-art tensor nuclear norm minimization approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Notes

  1. https://doi.org/10.5281/zenodo.1205229.

  2. https://github.com/zhiyongc/Seattle-Loop-Data.

  3. https://tianchi.aliyun.com/competition/entrance/231708/information.

  4. https://github.com/hanchengge/AirCP.

  5. https://github.com/sysuits/BATF

  6. https://github.com/lijunsun/bgcp_imputation

  7. https://github.com/qbzhao/BCPF

  8. Matlab code: http://mp.cs.nthu.edu.tw/

  9. https://github.com/canyilu/tensor-completion-tensor-recovery

  10. https://yubangzheng.github.io/homepage/

  11. http://trace.eas.asu.edu/yuv/

  12. https://ece.uwaterloo.ca/~z70wang/research/ssim/

References

  1. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137, 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck, A.: First-Order Methods in Optimization. SIAM, Philadelphia (2017)

    Book  MATH  Google Scholar 

  3. Bengua, J.A., Phien, H., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Formulas, 2nd edn. Princeton University Press, Princeton, NJ (2009)

    Book  MATH  Google Scholar 

  5. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation, Numerical Methods. Prentice-Hall, Englewood Cliffs, NJ (1989)

    MATH  Google Scholar 

  6. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146, 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candés, E., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., He, Z., Chen, Y., Lu, Y., Wang, J.: Missing traffic data imputation and pattern discovery with a Bayesian augmented tensor factorization model. Transp. Res. Part C Emerg. Technol. 104, 66–77 (2019)

    Article  Google Scholar 

  9. Chen, X., He, Z., Sun, L.: A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation. Transp. Res. Part C Emerg. Technol. 98, 73–84 (2019)

    Article  Google Scholar 

  10. Chen, Y.L., Hsu, C.T., Liao, H.Y.: Simultaneous tensor decomposition and completion using factor priors. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 577–591 (2014)

    Article  Google Scholar 

  11. Du, S., Xiao, Q., Shi, Y., Cucchiara, R., Ma, Y.: Unifying tensor factorization and tensor nuclear norm approach for low-rank tensor completion. Neurocomputing 458, 204–218 (2021)

    Article  Google Scholar 

  12. Ely, G., Aeron, S., Hao, N., Kilmer, M.E.: 5D and 4D pre-stack seismic data completion using tensor nuclear norm (TNN). In: SEG International Exposition and Eighty-Third annual Meeting at Hoston, TX (2013)

  13. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 27, 025,010 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ge, H., Caverlee, J., Zhang, N., Squicciarini, A.: Uncovering the spatio-temporal dynamics of memes in the presence of incomplete information. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM ’16, pp. 1493–1502. Association for Computing Machinery, New York, NY, USA (2016)

  15. Hao, N., Kilmer, M.E., Braman, K., Hoover, R.C.: Facial recognition using tensor–tensor decompositions. SIAM J. Imaging Sci. 6(1), 437–463 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hitchcock, F.: The expression of a tensor or a polyadic as a sum of products. Stud. Appl. Math. 6, 164–189 (1927)

    MATH  Google Scholar 

  17. Jiang, T.X., Ng, M.K., Zhao, X.L., Huang, T.Z.: Framelet representation of tensor nuclear norm for third-order tensor completion. IEEE Trans. Image Process. 29, 7233–7244 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kernfeld, E., Kilmer, M.E., Aeron, S.: Tensor-tensor products with invertible linear transforms. Linear Algebra Appl. 485, 545–570 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kilmer, M., Braman, K., Hao, N., Hoover, R.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34, 148–172 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kilmer, M., Martin, C.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kong, H., Lu, C., Lin, Z.: Tensor Q-rank: new data dependent definition of tensor rank. Mach. Learn. 110, 1867–1900 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, B., Zhao, X., Ji, T., Zhang, X., Huang, T.: Nonlinear transform induced tensor nuclear norm for tensor completion. J. Sci. Comput. 92, 83 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ling, C., Yu, G., Qi, L., Xu, Y.: T-product factorization method for internet traffic data completion with spatio-temporal regularization. Comput. Optim. Appl. 80, 883–913 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)

    Article  Google Scholar 

  26. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 5249–5257 (2016)

  27. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42, 925–938 (2020)

    Article  Google Scholar 

  28. Lu, C., Feng, J., Lin, Z., Yan, S.: Exact low tubal rank tensor recovery from Gaussian measurements. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 2504–2510. International Joint Conferences on Artificial Intelligence Organization (2018)

  29. Lu, C., Peng, X., Wei, Y.: Low-rank tensor completion with a new tensor nuclear norm induced by invertible linear transforms. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5989–5997 (2019)

  30. Mazumder, R., Hastie, T., Tibshirani, R.: Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 11, 2287–2322 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Mu, C., Huang, B., Wright, J., Goldfarb, D.: Square deal: lower bounds and improved relaxations for tensor recovery. In: Proceedings of the 31st International Conference on International Conference on Machine Learning, vol. 32, pp. 73–81 (2014)

  32. Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Qi, L., Chen, Y., Bakshi, M., Zhang, X.: Triple decomposition and tensor recovery of third order tensors. SIAM J. Matrix Anal. Appl. 42, 299–329 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Qiu, D., Bai, M., Ng, M., Zhang, X.: Robust low-rank tensor completion via transformed tensor nuclear norm with total variation regularization. Neurocomputing 435, 197–215 (2021)

    Article  Google Scholar 

  35. Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum rank solutions of matrix equations via nuclear norm minimization. SIAM Rev. 52, 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Romera-Paredes, B., Pontil, M.: A new convex relaxation for tensor completion. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26. Curran Associates Inc., Red Hook, NY (2013)

    Google Scholar 

  37. Roughan, M., Zhang, Y., Willinger, W., Qiu, L.: Spatio-temporal compressive sensing and internet traffic matrices (extended version). IEEE/ACM Trans. Netw. 20, 662–676 (2012)

    Article  Google Scholar 

  38. Semerci, O., Hao, N., Kilmer, M.E., Miller, E.L.: Tensor-based formulation and nuclear norm regularization for multienergy computed tomography. IEEE Trans. Image Process. 23(4), 1678–1693 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shang, K., Li, Y.F., Huang, Z.H.: Iterative p-shrinkage thresholding algorithm for low Tucker rank tensor recovery. Inf. Sci. 482, 374–391 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Song, G., Ng, M.K., Zhang, X.: Robust tensor completion using transformed tensor singular value decomposition. Numer. Linear Algebra Appl. 27, e2299 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Song, Q., Ge, H., Caverlee, J., Hu, X.: Tensor completion algorithms in big data analytics. ACM Trans. Knowl. Discov. Data 13, 1–48 (2019)

    Article  Google Scholar 

  42. Srebro, N., Rennie, J., Jaakkola, T.: Maximum-margin matrix factorization. In: Advances in Neural Information Processing Systems, vol. 17, pp. 1329–1336. MIT Press (2005)

  43. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  44. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4, 333–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xu, W., Zhao, X., Ng, M.K.: A fast algorithm for cosine transform based tensor singular value decomposition. arXiv: 1902.03070 (2019)

  46. Xu, Y., Hao, R., Yin, W., Su, Z.: Parallel matrix factorization for low-rank tensor completion. Inverse Prob. Imag. 9(2), 601–624 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yuan, M., Zhang, C.H.: On tensor completion via nuclear norm minimization. Found. Comput. Math. 16, 1031–1068 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, X., Ng, M.: A corrected tensor nuclear norm minimization method for noisy low-rank tensor completion. SIAM J. Imaging Sci. 12, 1231–1273 (2019)

    Article  MathSciNet  Google Scholar 

  49. Zhang, Z., Aeron, S.: Exact tensor completion using t-SVD. IEEE Trans. Signal Process. 65(6), 1511–1526 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.E.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3842–3849 (2014)

  51. Zhao, Q.B., Zhang, L.Q., Cichocki, A.: Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1751–1763 (2015)

    Article  Google Scholar 

  52. Zheng, Y., Huang, T., Zhao, X., Jiang, T., Ji, T., Ma, T.: Tensor n-tubal rank and its convex relaxation for low-rank tensor recovery. Inf. Sci. 532, 170–189 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the two anonymous referees for their close reading and valuable comments, which helped us improve the quality of this paper greatly.

Funding

This work is supported in part by National Natural Science Foundation of China (Nos. 11771113 and 11971138) and Natural Science Foundation of Zhejiang Province (Nos. LY19A010019 and LD19A010002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Ling.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix: Convergence Properties of Algorithm 1

A Appendix: Convergence Properties of Algorithm 1

In this appendix, we will show the convergence properties of Algorithm 1. We begin our analysis with introducing the following notations. Throughout this appendix, we use the notation \({\mathbb {E}}:={\mathbb {E}}_1\times {\mathbb {E}}_2\times \cdots \times {\mathbb {E}}_5\) with \({\mathbb {E}}_1={\mathbb {K}}_p^{m\times r}\) , \({\mathbb {E}}_2={\mathbb {K}}_p^{r\times n}\), and \({\mathbb {E}}_i={\mathbb {K}}_p^{m\times n}\) for \(i=3,4,5\), and let \({\mathcal {W}}:=({\mathcal {X}},{\mathcal {Y}},{\mathcal {Z}},{\mathcal {U}},{\mathcal {V}})\in {\mathbb {E}}\) and \(\varPsi ({\mathcal {W}})=\varPsi ({\mathcal {X}},{\mathcal {Y}},{\mathcal {Z}},{\mathcal {U}},{\mathcal {V}})\). In particular, we denote

figure c

where ‘\(+{\mathcal {X}}^{q+1}\)’ means using \({\mathcal {X}}^{q+1}\) in place of \({\mathcal {X}}^{q}\) in \(\varPsi \left( {\mathcal {W}}^{q}\right) \) and ‘\(-{\mathcal {X}}^{q}\)’ means taking \({\mathcal {X}}^{q}\) instead of \({\mathcal {X}}^{q+1}\) in \(\varPsi \left( {\mathcal {W}}^{q+1}\right) \).

Definition A.1

A point \({\mathcal {W}}^{\star }=({\mathcal {X}}^{\star },{\mathcal {Y}}^{\star },{\mathcal {Z}}^{\star },{\mathcal {U}}^{\star },{\mathcal {V}}^{\star })\in {\mathbb {E}}\) is a coordinate-wise minimum point of \(\varPsi \), if \({\mathscr {P}}_\varOmega ({\mathcal {Z}}^{\star })={\mathscr {P}}_\varOmega ({\mathcal {G}})\) and

$$\begin{aligned} \varPsi ({\mathcal {W}}^{\star })\le \varPsi \left( {\mathcal {W}}^{\star }+{\mathcal {T}}_i({\mathcal {H}})\right) ~~~~i=1,2,\ldots ,5, \;\; {\mathcal {H}}\in {\mathbb {E}}_i, \end{aligned}$$

where \({\mathcal {T}}_i({\mathcal {H}})=({\varvec{0}},\ldots ,\underbrace{{\mathcal {H}}}_{\mathrm{the}~i\mathrm{th~tensor}},\ldots ,{\varvec{0}})\) for \(i=1,2,\ldots ,5\), and in addition, \({\mathscr {P}}_\varOmega ({\mathcal {Z}}^{\star }+{\mathcal {H}})={\mathscr {P}}_\varOmega ({\mathcal {G}})\) when \(i=3\).

Consequently, problem (4.4) has at least one minimizer, and for any \(\bar{{\mathcal {W}}}\in {\mathbb {E}}\), all subproblems in (4.6)–(4.10) possess unique minimizer, which implies that Algorithm 1 is well-defined.

Proposition A.1

Let \(\left\{ {\mathcal {W}}^q\right\} \) be the sequence generated by Algorithm 1. Then \(\left\{ {\mathcal {W}}^q\right\} \) is bounded, and any limit point of \(\left\{ {\mathcal {W}}^q\right\} \) is a coordinate-wise minimum of (4.4).

Proof

From the special structure of the objective function \(\varPsi \), we see that \(\varPsi \) has bounded level set, i.e., \(\mathrm{Lev}(\varPsi , \alpha )=\{{\mathcal {W}}\in {\mathbb {E}}~|~\varPsi ({\mathcal {W}})\le \alpha \}\) is bounded for any \(\alpha \in {\mathbb {R}}_+\). Moreover, by Algorithm 1, the sequence of function values \(\{\varPsi \left( {\mathcal {W}}^q\right) \}\) is nonincreasing, which in particular implies that \(\left\{ {\mathcal {W}}^q\right\} \subseteq \mathrm{Lev}\left( \varPsi ,\varPsi ({\mathcal {W}}^0)\right) \). Hence, we know that the sequence \(\left\{ {\mathcal {W}}^q\right\} \) is bounded.

On the other hand, the strong convexity of every subproblem implies that each one has one unique minimizer. By [2, Theorem 14.3], it follows that any limit point of \(\left\{ {\mathcal {W}}^q\right\} \) is a coordinate-wise minimum point of (4.4). \(\square \)

Theorem A.1

Every coordinate-wise minimum point of (4.4) is its a stationary point.

Proof

Let \({\mathcal {W}}^{\star }\) be a coordinate-wise minimum point of (4.4). Then it follows that

$$\begin{aligned} {\mathcal {X}}^{\star }\in \mathrm{argmin}_{{\mathcal {X}}\in {\mathbb {K}}_p^{m\times n}}{\bar{\varPsi }}_1({\mathcal {X}}), \end{aligned}$$

where \({\bar{\varPsi }}_1({\mathcal {X}}):=\varPsi ({\mathcal {X}},{\mathcal {Y}}^{\star },{\mathcal {Z}}^{\star },{\mathcal {U}}^{\star },{\mathcal {V}}^{\star })\), which implies \(\nabla {\bar{\varPsi }}_1({\mathcal {X}}^{\star })=0\). Since \(\nabla _{{\mathcal {X}}}{\varPsi }({\mathcal {W}}^{\star })=\nabla {\bar{\varPsi }}_1({\mathcal {X}}^{\star })\), we obtain \(\nabla _{{\mathcal {X}}}{\varPsi }({\mathcal {W}}^{\star })=0\). Similarly, we can prove

$$\begin{aligned} \left( \nabla _{{\mathcal {Y}}}{\varPsi }({\mathcal {W}}^{\star }),\nabla _{{\mathcal {U}}}{\varPsi }({\mathcal {W}}^{\star }),\nabla _{{\mathcal {V}}}{\varPsi }({\mathcal {W}}^{\star })\right) =0. \end{aligned}$$

Note that

$$\begin{aligned} {\mathcal {Z}}^{\star }=\arg \min _{{\mathcal {Z}}\in {\mathbb {K}}_p^{m\times n}}{\bar{\varPsi }}_3({\mathcal {Z}}):=\varPsi ({\mathcal {X}}^{\star },{\mathcal {Y}}^{\star },{\mathcal {Z}},{\mathcal {U}}^{\star },{\mathcal {V}}^{\star })+\delta _{{\mathbb {S}}}({\mathcal {Z}}) \end{aligned}$$

with \(\delta _{{\mathbb {S}}}(\cdot )\) being an indicator function associated to \({\mathbb {S}}=\{{\mathcal {Z}}\in {\mathbb {K}}_p^{m\times n}~|~{\mathscr {P}}_\varOmega ({\mathcal {Z}})={\mathscr {P}}_\varOmega ({\mathcal {G}})\}\), which implies \(-\nabla _{{\mathcal {Z}}}\varPsi ({\mathcal {W}}^{\star })\in \partial \delta _{{\mathbb {S}}}({\mathcal {Z}}^{\star })\). From the definition of the subdifferential \(\partial \delta _{{\mathbb {S}}}(\cdot )\), we have \(\langle -\nabla _{{\mathcal {Z}}}\varPsi ({\mathcal {W}}^{\star }), {\mathcal {Z}}-{\mathcal {Z}}^{\star }\rangle \le 0\) for any \({\mathcal {Z}}\in S\). Consequently, it follows that \( (\nabla _{{\mathcal {Z}}}\varPsi ({\mathcal {W}}^{\star }))_{ijk}=0\) for any \((i,j,k)\not \in \varOmega \), and \({\mathcal {Z}}_{ijk}={\mathcal {G}}_{ijk}\) for any \((i,j,k)\in \varOmega \). Summarizing the above arguments, we know that \({\mathcal {W}}^{\star }\) is a stationary point of (4.4). \(\square \)

We now recall the well-known descent lemma for smooth functions, e.g., see [5].

Lemma A.1

(Descent lemma) Let \(\varphi : {\mathbb {R}}^d\rightarrow {\mathbb {R}}\) be a continuously differentiable function with gradient \(\nabla \varphi \) assumed to be \(\xi \)-Lipschitz continuous. Then,

$$\begin{aligned} \varphi ({\varvec{u}})\le \varphi ({\varvec{v}})+\langle {\varvec{u}}-{\varvec{v}},\nabla \varphi ({\varvec{v}})\rangle +\frac{\xi }{2}\Vert {\varvec{u}}-{\varvec{v}}\Vert ^2,~~~~\forall ~{\varvec{u}},{\varvec{v}}\in {\mathbb {R}}^d. \end{aligned}$$
(A.3)

Proposition A.2

Let \(\left\{ {\mathcal {W}}^q\right\} \) be a sequence generated by Algorithm 1. Then, we have

figure d

where \({{{\bar{\tau }}}}_1^q={\min }_{1\le k\le p}\left\{ \tau _1^{(q,k)}\sigma ^2_{\min }(L)\right\} \) and \({{{\bar{\tau }}}}_2^q={\min }_{1\le k\le p}\left\{ \tau _2^{(q,k)}\sigma ^2_{\min }(L)\right\} \) with

figure e

Proof

We only prove (A.4), and inequality (A.5) can be proved similarly. It follows from the definition of \(\varPsi ({\mathcal {W}})\) in (4.5) and notation \((\varPhi _L({\mathcal {X}}^q))^{(k)}=(\widehat{{\mathcal {X}}}^q)^{(k)}\) that

$$\begin{aligned} \varPsi \left( {\mathcal {W}}^{q}\right) -\varPsi ({\mathcal {W}}^{q},+{\mathcal {X}}^{q+1}) = \sum _{k=1}^p\left( h^q_k\left( (\widehat{{\mathcal {X}}}^{q})^{(k)}\right) -h^q_k\left( (\widehat{{\mathcal {X}}}^{q+1})^{(k)}\right) \right) , \end{aligned}$$
(A.6)

where \(h^q_k(\cdot )\) is given by (4.13). It is trivial to see that the gradient \(\nabla h^q_k(\cdot )\) of \(h^q_k(\cdot )\) is \(\xi _{1}^{(q,k)}\)-Lipschitz continuous, where \(\xi _{1}^{(q,k)}:=\rho +\sigma ^2_{\max }((\widehat{{\mathcal {Y}}}^{q})^{(k)})\). Then, applying Lemma A.1 to \(h^q_k(\cdot )\) immediately yields

$$\begin{aligned} h^q_k\left( (\widehat{{\mathcal {X}}}^{q})^{(k)}\right) -h^q_k\left( (\widehat{{\mathcal {X}}}^{q+1})^{(k)}\right) \ge&-\left\langle \nabla h^q_k\left( (\widehat{{\mathcal {X}}}^{q})^{(k)}\right) , (\widehat{{\mathcal {X}}}^{q+1})^{(k)}-(\widehat{{\mathcal {X}}}^{q})^{(k)}\right\rangle \nonumber \\&\; -\frac{\xi _{1}^{(q,k)}}{2}\left\| (\widehat{{\mathcal {X}}}^{q+1})^{(k)}-(\widehat{{\mathcal {X}}}^{q})^{(k)}\right\| _F^2. \end{aligned}$$
(A.7)

By invoking the updating scheme of \((\widehat{{\mathcal {X}}}^{q+1})^{(k)}\), we have

$$\begin{aligned} -\nabla h^q_k\left( (\widehat{{\mathcal {X}}}^{q})^{(k)}\right) =\left( (\widehat{{\mathcal {X}}}^{q+1})^{(k)}-(\widehat{{\mathcal {X}}}^{q})^{(k)}\right) \left( (\widehat{{\mathcal {Y}}}^{q})^{(k)}\left( (\widehat{{\mathcal {Y}}}^{q})^{(k)}\right) ^* +\rho I\right) . \end{aligned}$$

Consequently, it holds that

$$\begin{aligned}&-\left\langle \nabla h^q_k\left( (\widehat{{\mathcal {X}}}^{q})^{(k)}\right) , (\widehat{{\mathcal {X}}}^{q+1})^{(k)}-(\widehat{{\mathcal {X}}}^{q})^{(k)}\right\rangle \nonumber \\&\quad =\left\langle \left( (\widehat{{\mathcal {X}}}^{q+1})^{(k)}-(\widehat{{\mathcal {X}}}^{q})^{(k)}\right) \left( (\widehat{{\mathcal {Y}}}^{q})^{(k)}\left( (\widehat{{\mathcal {Y}}}^{q})^{(k)}\right) ^* +\rho I\right) , \; (\widehat{{\mathcal {X}}}^{q+1})^{(k)}-(\widehat{{\mathcal {X}}}^{q})^{(k)} \right\rangle \nonumber \\&\quad \ge \left( \rho +\sigma ^2_{\min }\left( (\widehat{{\mathcal {Y}}}^q)^{(k)}\right) \right) \left\| (\widehat{{\mathcal {X}}}^{q+1})^{(k)}-(\widehat{{\mathcal {X}}}^{q})^{(k)}\right\| _F^2, \end{aligned}$$

which, together with (A.7), implies that

$$\begin{aligned} h^q_k\left( (\widehat{{\mathcal {X}}}^{q})^{(k)}\right) -h^q_k\left( (\widehat{{\mathcal {X}}}^{q+1})^{(k)}\right)&\ge \tau _1^{(q,k)}\left\| (\widehat{{\mathcal {X}}}^{q+1})^{(k)}-(\widehat{{\mathcal {X}}}^{q})^{(k)}\right\| _F^2 \nonumber \\&\ge \tau _1^{(q,k)}\sigma _{\min }^2(L)\left\| ({{\mathcal {X}}}^{q+1})^{(k)}-({{\mathcal {X}}}^{q})^{(k)}\right\| _F^2. \end{aligned}$$
(A.8)

We then conclude from (A.6) and (A.8) that

$$\begin{aligned} \varPsi \left( {\mathcal {W}}^{q}\right) -\varPsi ({\mathcal {W}}^{q},+{\mathcal {X}}^{q+1})&\ge \sum _{k=1}^p\tau _1^{(q,k)}\left\| (\widehat{{\mathcal {X}}}^{q+1})^{(k)}-(\widehat{{\mathcal {X}}}^{q})^{(k)}\right\| _F^2 \nonumber \\&\ge {{{\bar{\tau }}}}_1^q\sum _{k=1}^p\left\| ({{\mathcal {X}}}^{q+1})^{(k)}-({{\mathcal {X}}}^{q})^{(k)}\right\| _F^2 \nonumber \\&={{{\bar{\tau }}}}_1^q \left\| {{\mathcal {X}}}^{q+1}-{{\mathcal {X}}}^{q}\right\| _F^2. \end{aligned}$$

We obtain the desired results and complete the proof. \(\square \)

Proposition A.3

Let \(\left\{ {\mathcal {W}}^q\right\} \) be a sequence generated by Algorithm 1. Then, we have

$$\begin{aligned} \varPsi \left( {\mathcal {W}}^{q+1},-{\mathcal {Z}}^{q},-{\mathcal {U}}^{q},-{\mathcal {V}}^{q}\right) -\varPsi \left( {\mathcal {W}}^{q+1},-{\mathcal {U}}^{q},-{\mathcal {V}}^{q}\right) \ge {{\bar{\tau }}}_{3}\left\| {\mathcal {Z}}^{q+1}-{\mathcal {Z}}^q\right\| _F^2, \end{aligned}$$
(A.9)

where \({{\bar{\tau }}}_{3}=(1+\beta _1+\beta _2)/2\).

Proof

Let us divide the tensor \({\mathcal {Z}}\) into two parts, denoted as \({\mathcal {Z}}_{\varOmega }\) and \({\mathcal {Z}}_{\varOmega ^c}\) respectively, where \(\varOmega ^c\) is the complement of \(\varOmega \), and the elements in \({\mathcal {Z}}_{\varOmega }\) are composed of elements in \({\mathcal {G}}_{\varOmega }\), i.e., \({\mathcal {Z}}_{\varOmega }={\mathcal {G}}_{\varOmega }\). Accordingly, denote

$$\begin{aligned} f^q({\mathcal {Z}}_{\varOmega ^c}) =\frac{1}{2}\left\| ({\mathcal {X}}^{q+1}\circledast _{L}{\mathcal {Y}}^{q+1})_{\varOmega ^c}-{\mathcal {Z}}_{\varOmega ^c}\right\| _F^2+\frac{\beta _1}{2}\left\| {\mathcal {Z}}_{\varOmega ^c}-{\mathcal {U}}^{q}_{\varOmega ^c}\right\| _F^2+\frac{\beta _2}{2}\left\| {\mathcal {Z}}_{\varOmega ^c}-{\mathcal {V}}^{q}_{\varOmega ^c}\right\| _F^2. \end{aligned}$$

It is easy to see that

$$\begin{aligned} \varPsi \left( {\mathcal {W}}^{q+1},-{\mathcal {Z}}^{q},-{\mathcal {U}}^{q},-{\mathcal {V}}^{q}\right) -\varPsi \left( {\mathcal {W}}^{q+1},-{\mathcal {U}}^{q},-{\mathcal {V}}^{q}\right) =f^q({\mathcal {Z}}^q_{\varOmega ^c})-f^q({\mathcal {Z}}^{q+1}_{\varOmega ^c}). \end{aligned}$$

Moreover, it can be easily seen that \(\nabla f^q(\cdot )\) is Lipschitz continuous with constant \((1+\beta _1+\beta _2)\). By \(-\nabla f^q({\mathcal {Z}}^q_{\varOmega ^c})=(1+\beta _1+\beta _2)\left( {\mathcal {Z}}^{q+1}_{\varOmega ^c}-{\mathcal {Z}}^{q}_{\varOmega ^c}\right) \), an application of Lemma A.1 leads to

$$\begin{aligned} f^q({\mathcal {Z}}^q_{\varOmega ^c})-f^q({\mathcal {Z}}^{q+1}_{\varOmega ^c})\ge {{\bar{\tau }}}_{3}\left\| {\mathcal {Z}}_{\varOmega ^c}^{q+1}-{\mathcal {Z}}_{\varOmega ^c}^q\right\| _F^2, \end{aligned}$$

which implies that (A.9) holds, since \(\left\| {\mathcal {Z}}_{\varOmega ^c}^{q+1}-{\mathcal {Z}}_{\varOmega ^c}^q\right\| _F^2=\left\| {\mathcal {Z}}^{q+1}-{\mathcal {Z}}^q\right\| _F^2\). The proof is completed. \(\square \)

Proposition A.4

Let \(\left\{ {\mathcal {W}}^q\right\} \) be a sequence generated by Algorithm 1. Then, we have

figure f

where

figure g

Proof

We only prove (A.10). The inequality (A.11) can be proved in a similar way. First, it is easy to see that

$$\begin{aligned}&\varPsi ({\mathcal {W}}^{q+1},-{\mathcal {U}}^{q},-{\mathcal {V}}^{q})-\varPsi ({\mathcal {W}}^{q+1},-{\mathcal {V}}^{q}) \nonumber \\&\quad =\frac{1}{2}\left\{ \mu _1\left\| H{\mathcal {U}}^q_{[1]}\right\| _F^2+\beta _1\left\| {\mathcal {Z}}^{q+1}-{\mathcal {U}}^{q}\right\| _F^2\right\} -\frac{1}{2}\left\{ \mu _1\left\| H{\mathcal {U}}^{q+1}_{[1]}\right\| _F^2+\beta _1\left\| {\mathcal {Z}}^{q+1}-{\mathcal {U}}^{q+1}\right\| _F^2\right\} \nonumber \\&\quad =\frac{1}{2}\sum _{k=1}^p\left( \mu _1\left\| H({\mathcal {U}}^q)^{(k)}\right\| _F^2+\beta _1\left\| ({\mathcal {Z}}^{q+1})^{(k)}-({\mathcal {U}}^{q})^{(k)}\right\| _F^2\right) \nonumber \\&\quad \quad -\frac{1}{2}\sum _{k=1}^p\left( \mu _1\left\| H({\mathcal {U}}^{q+1})^{(k)}\right\| _F^2+\beta _1\left\| ({\mathcal {Z}}^{q+1})^{(k)}-({\mathcal {U}}^{q+1})^{(k)}\right\| _F^2\right) , \end{aligned}$$
(A.12)

where the last equality comes from (4.2) and \(\Vert {\mathcal {A}}\Vert ^2_F=\sum _{k=1}^p\Vert {\mathcal {A}}^{(k)}\Vert _F^2\) for any \({\mathcal {A}}\in {\mathbb {K}}_p^{m\times n}\). Let

$$\begin{aligned} g_k^q(U)=\frac{1}{2}\left( \mu _1\left\| HU\right\| _F^2+\beta _1\left\| ({\mathcal {Z}}^{q+1})^{(k)}-U\right\| _F^2\right) ,~~~U\in {\mathbb {R}}^{m\times n}. \end{aligned}$$

By the iterative scheme of \(({\mathcal {U}}^{q+1})^{(k)}\), it is obvious that the gradient of \(g_k^q(\cdot )\) at \(({\mathcal {U}}^q)^{(k)}\) reads as

$$\begin{aligned} \nabla g_k^q\left( ({\mathcal {U}}^q)^{(k)}\right) =-\left( \beta _1 I+\mu _1H^* H\right) \left( ({\mathcal {U}}^{q+1})^{(k)}-({\mathcal {U}}^{q})^{(k)}\right) . \end{aligned}$$

Consequently, it holds that

$$\begin{aligned} \left\langle \nabla g_k^q\left( ({\mathcal {U}}^q)^{(k)}\right) ,({\mathcal {U}}^{q})^{(k)}-({\mathcal {U}}^{q+1})^{(k)}\right\rangle \ge \left( \beta _1 +\mu _1\sigma ^2_{\min }(H)\right) \left\| ({\mathcal {U}}^{q+1})^{(k)}-({\mathcal {U}}^{q})^{(k)}\right\| _F^2.\nonumber \\ \end{aligned}$$
(A.13)

By using the Lipschitz continuity of \(\nabla g_k^q(\cdot )\), we have

$$\begin{aligned} \left\| \nabla g_k^q\left( ({\mathcal {U}}^q)^{(k)}\right) -\nabla g_k^q\left( ({\mathcal {U}}^{q+1})^{(k)}\right) \right\| _F\le \left( \beta _1+\mu _1\sigma _{\max }^2(H)\right) \left\| ({\mathcal {U}}^q)^{(k)}-({\mathcal {U}}^{q+1})^{(k)}\right\| _F, \end{aligned}$$

Applying Lemma A.1 to \(g_k^q(\cdot )\) and combining with (A.13) immediately yields

$$\begin{aligned}&g^q_k\left( ({\mathcal {U}}^{q})^{(k)}\right) -g^q_k\left( ({\mathcal {U}}^{q+1})^{(k)}\right) \\&\quad \ge \left\langle \nabla g_k^q\left( ({\mathcal {U}}^q)^{(k)}\right) ,({\mathcal {U}}^{q})^{(k)}-({\mathcal {U}}^{q+1})^{(k)}\right\rangle -\frac{\beta _1+\mu _1\sigma _{\max }^2(H)}{2}\left\| ({\mathcal {U}}^{q+1})^{(k)}-({\mathcal {U}}^{q})^{(k)}\right\| _F^2 \\&\quad \ge \bar{\tau }_4\left\| ({\mathcal {U}}^{q+1})^{(k)}-({\mathcal {U}}^{q})^{(k)}\right\| _F^2, \end{aligned}$$

which, together with (A.12), immediately implies that

$$\begin{aligned} \varPsi ({\mathcal {W}}^{q+1},-{\mathcal {U}}^{q},-{\mathcal {V}}^{q})-\varPsi ({\mathcal {W}}^{q+1},-{\mathcal {V}}^{q})&=\sum _{k=1}^pg^q_k\left( ({\mathcal {U}}^{q})^{(k)}\right) -g^q_k\left( ({\mathcal {U}}^{q+1})^{(k)}\right) \\&\ge {{\bar{\tau }}}_4\sum _{k=1}^p\left\| ({\mathcal {U}}^{q+1})^{(k)}-({\mathcal {U}}^{q})^{(k)}\right\| _F^2 \\&={{\bar{\tau }}}_{4}\left\| {\mathcal {U}}^{q+1}-{\mathcal {U}}^{q}\right\| _F^2. \end{aligned}$$

We obtain the desired results and complete the proof. \(\square \)

Theorem A.2

(Sufficient decrease property) Let \(\left\{ {\mathcal {W}}^q\right\} \) be a sequence generated by Algorithm 1. Then, the sequence \(\{\varPsi \left( {\mathcal {W}}^q\right) \}\) is nonincreasing. In particular, if there exists a real number \({{\bar{\kappa }}}>0\) such that

$$\begin{aligned} {\min }\left\{ {\min }\left\{ {{\bar{\tau }}}_{1}^q~|~q=1,2,\ldots \right\} , {\min }\left\{ {{\bar{\tau }}}_{2}^q~|~q=1,2,\ldots \right\} ,{{\bar{\tau }}}_3,{{\bar{\tau }}}_4,{{\bar{\tau }}}_5\right\} \ge {{\bar{\kappa }}}, \end{aligned}$$

then

$$\begin{aligned} \varPsi \left( {\mathcal {W}}^{q+1}\right) +\bar{\kappa }\left\| {\mathcal {W}}^{q+1}-{\mathcal {W}}^q\right\| _F^2\le \varPsi \left( {\mathcal {W}}^{q+1}\right) . \end{aligned}$$
(A.14)

Proof

By Propositions A.2A.4 and A.3, we have

$$\begin{aligned} \varPsi \left( {\mathcal {W}}^{q}\right) -\varPsi \left( {\mathcal {W}}^{q+1}\right)&\ge {{{\bar{\tau }}}}_1^q\left\| {\mathcal {X}}^{q+1}-{\mathcal {X}}^q\right\| _F^2+{{{\bar{\tau }}}}_2^q\left\| {\mathcal {Y}}^{q+1}-{\mathcal {Y}}^q\right\| _F^2+{{\bar{\tau }}}_{3}\left\| {\mathcal {Z}}^{q+1}-{\mathcal {Z}}^q\right\| _F^2 \nonumber \\&\quad +{{\bar{\tau }}}_4\left\| {\mathcal {U}}^{q+1}-{\mathcal {U}}^q\right\| _F^2+{{\bar{\tau }}}_5\left\| {\mathcal {V}}^{q+1}-{\mathcal {V}}^q\right\| _F^2 \nonumber \\&\ge 0, \end{aligned}$$
(A.15)

which implies that the sequence \(\left\{ \varPsi \left( {\mathcal {W}}^q\right) \right\} \) is nonincreasing. As a consequence, combining the given condition on \({{\bar{\kappa }}}\) and (A.15) immediately leads to

$$\begin{aligned} \varPsi \left( {\mathcal {W}}^{q}\right) -\varPsi \left( {\mathcal {W}}^{q+1}\right)&\ge {{\bar{\kappa }}}\Big \{\left\| {\mathcal {X}}^{q+1}-{\mathcal {X}}^q\right\| _F^2+\left\| {\mathcal {Y}}^{q+1}-{\mathcal {Y}}^q\right\| _F^2+\left\| {\mathcal {Z}}^{q+1}-{\mathcal {Z}}^q\right\| _F^2\\&\quad +\left\| {\mathcal {U}}^{q+1}-{\mathcal {U}}^q\right\| _F^2+\left\| {\mathcal {V}}^{q+1}-{\mathcal {V}}^q\right\| _F^2\Big \}\\&={{\bar{\kappa }}}\left\| {\mathcal {W}}^{q+1}-{\mathcal {W}}^q\right\| _F^2, \end{aligned}$$

which means the desired result follows.\(\square \)

Proposition A.5

Let \(\left\{ {\mathcal {W}}^q\right\} \) be a sequence generated by Algorithm 1. Then there exists \(c>0\) such that for every q, we have

$$\begin{aligned} \left\| \nabla _{{\mathcal {X}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \right\| _F\le {\hat{c}}c\big \Vert {\mathcal {Z}}^{q+1}-{\mathcal {Z}}^q\big \Vert _F+{\hat{c}}c(2c^2+1)\big \Vert {\mathcal {Y}}^{q+1}-{\mathcal {Y}}^{q}\big \Vert _F \end{aligned}$$
(6.16)

and

$$\begin{aligned} \left\| \nabla _{{\mathcal {Y}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \right\| _F\le {\hat{c}}c\left\| {\mathcal {Z}}^{q+1}-{\mathcal {Z}}^q\right\| _F, \end{aligned}$$
(6.17)

where \(c={\min }\left\{ \Vert {\mathcal {W}}^q\Vert _F~|~q=1,2,\ldots \right\} \) and \({\hat{c}}=\sigma ^2_{\max }(L)\max _{1\le k\le p}\{\vartheta _k\}\) is a constant.

Proof

We first prove (6.16). With notation \(\widehat{{\mathcal {A}}}:=\varPhi _L({\mathcal {A}})\) and (4.11), we let

$$\begin{aligned} \varGamma _k({\mathcal {X}},{\mathcal {Y}},{\mathcal {Z}})=\frac{1}{2}\left\| \widehat{{\mathcal {X}}}^{(k)}\widehat{{\mathcal {Y}}}^{(k)}-\widehat{{\mathcal {Z}}}^{(k)}\right\| _F^2 +\frac{\rho }{2}\left( \left\| \widehat{{\mathcal {X}}}^{(k)}\right\| _F^2+\left\| \widehat{{\mathcal {Y}}}^{(k)}\right\| _F^2\right) . \end{aligned}$$

Then we have

$$\begin{aligned} \nabla _{{\mathcal {X}}}\varPsi ({\mathcal {W}})=\sum _{k=1}^p\nabla _{{\mathcal {X}}}\varGamma _k({\mathcal {X}},{\mathcal {Y}},{\mathcal {Z}}) \end{aligned}$$
(6.18)

By a direct computation, we obtain

$$\begin{aligned} \nabla _{{\mathcal {X}}}\varGamma _k({\mathcal {X}},{\mathcal {Y}},{\mathcal {Z}}) =\left( \widehat{{\mathcal {Y}}}^{(k)}\left( \widehat{{\mathcal {Y}}}^{(k)}\right) ^* +\rho I\right) \bullet {\mathscr {M}}_{L_k}(\mathbf{x}) -\left( \widehat{{\mathcal {Z}}}^{(k)}\left( \widehat{{\mathcal {Y}}}^{(k)}\right) ^* \right) \cdot \mathrm{tube}\left( L_{k\cdot }^* \right) , \end{aligned}$$
(6.19)

where throughout \(L_{k\cdot }\) represents the k-th row of matrix L and

$$\begin{aligned} {\mathscr {M}}_{L_k}(\mathbf{x})= \left[ \begin{array}{ccc} \mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{x}_{11})\right) \;&{}\cdots &{}\;\mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{x}_{1r})\right) \\ \mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{x}_{21})\right) \;&{}\cdots &{}\;\mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{x}_{2r})\right) \\ \vdots &{}\vdots &{}\vdots \\ \mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{x}_{m1})\right) \;&{}\cdots &{}\;\mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{x}_{mr})\right) \\ \end{array} \right] . \end{aligned}$$

Consequently, it follows from (6.19) that

$$\begin{aligned}&\left\| \nabla _{{\mathcal {X}}}\varGamma _k({\mathcal {X}}^{q+1},{\mathcal {Y}}^{q+1},{\mathcal {Z}}^{q+1})-\nabla _{{\mathcal {X}}}\varGamma _k({\mathcal {X}}^{q+1},{\mathcal {Y}}^q,{\mathcal {Z}}^q)\right\| _F \nonumber \\&\quad \le \left\| \nabla _{{\mathcal {X}}}\varGamma _k({\mathcal {X}}^{q+1},{\mathcal {Y}}^{q+1},{\mathcal {Z}}^{q+1})-\nabla _{{\mathcal {X}}}\varGamma _k({\mathcal {X}}^{q+1},{\mathcal {Y}}^{q+1},{\mathcal {Z}}^q)\right\| _F \nonumber \\&\quad ~~+\left\| \nabla _{{\mathcal {X}}}\varGamma _k({\mathcal {X}}^{q+1},{\mathcal {Y}}^{q+1},{\mathcal {Z}}^{q})-\nabla _{{\mathcal {X}}}\varGamma _k({\mathcal {X}}^{q+1},{\mathcal {Y}}^q,{\mathcal {Z}}^q)\right\| _F \nonumber \\&\quad \le \left\| (\widehat{{\mathcal {Y}}}^{q+1})^{(k)}\right\| _F \left\| (\widehat{{\mathcal {Z}}}^{q+1})^{(k)}-(\widehat{{\mathcal {Z}}}^{q})^{(k)}\right\| _F \left\| \mathrm{tube}\left( L_{k\cdot }^* \right) \right\| \nonumber \\&\quad ~~+\left\| (\widehat{{\mathcal {Y}}}^{q+1})^{(k)}\left( (\widehat{{\mathcal {Y}}}^{q+1})^{(k)}\right) ^* -(\widehat{{\mathcal {Y}}}^q)^{(k)}\left( (\widehat{{\mathcal {Y}}}^q)^{(k)}\right) ^* \right\| _F \left\| {\mathscr {M}}_{L_k}(\mathbf{x}^{q+1})\right\| _F \nonumber \\&\quad ~~+\left\| \mathrm{tube}\left( L_{k\cdot }^* \right) \right\| \left\| (\widehat{{\mathcal {Z}}}^q)^{(k)}\right\| _F \left\| (\widehat{{\mathcal {Y}}}^{q+1})^{(k)}-(\widehat{{\mathcal {Y}}}^q)^{(k)}\right\| _F. \end{aligned}$$
(6.20)

By the invertible transform L, we have

$$\begin{aligned} \sum _{k=1}^p\left\| (\widehat{{\mathcal {Y}}}^{q+1})^{(k)}\right\| _F \le \sigma _{\max }(L)\left\| {\mathcal {Y}}^{q+1}\right\| _F~\mathrm{and}~\sum _{k=1}^p\left\| (\widehat{{\mathcal {Z}}}^{q})^{(k)}\right\| _F \le \sigma _{\max }(L)\left\| {\mathcal {Z}}^{q}\right\| _F.\nonumber \\ \end{aligned}$$
(6.21)

Especially, when L is a unitary matrix, \(\sigma _{\max }(L)=1\) and the equality holds. Let \(\vartheta _k:=\big \Vert \mathrm{tube}(L_{k\cdot }^* )\big \Vert \) for \(k=1,2,\ldots , p\). Consequently, for \(i=1,2,\ldots ,m\) and \(l=1,2,\ldots ,r\), we have

$$\begin{aligned} \left\| \mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{x}^{q+1}_{il})\right) \right\| ^2=\big \Vert L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{x}^{q+1}_{il})\big \Vert ^2 \le \vartheta _k^2\big \Vert \mathbf{x}^{q+1}_{il}\big \Vert ^2, \end{aligned}$$

which implies

$$\begin{aligned} \left\| {\mathscr {M}}_{L_k}(\mathbf{x}^{q+1})\right\| _F^2 =\sum _{i,l}\left\| \mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{x}^{q+1}_{il})\right) \right\| ^2 \le \sum _{i,l}\vartheta _k^2\left\| \mathbf{x}^{q+1}_{il}\right\| ^2 =\vartheta _k^2\left\| {\mathcal {X}}^{q+1}\right\| _F^2. \end{aligned}$$
(6.22)

Recall the fact that

$$\begin{aligned} {\mathcal {X}}^{q+1}= \arg \min _{{\mathcal {X}}\in {\mathbb {K}}_p^{m\times n}}\varPsi ({\mathcal {X}},{\mathcal {Y}}^q,{\mathcal {Z}}^q,{\mathcal {U}}^q,{\mathcal {V}}^q), \end{aligned}$$

which implies \(\nabla _{{\mathcal {X}}}\varPsi ({\mathcal {X}}^{q+1}, {\mathcal {Y}}^q,{\mathcal {Z}}^q,{\mathcal {U}}^q,{\mathcal {V}}^q)=0\). Consequently, by (6.18), (6.20), (6.21) and (6.22), it holds that

$$\begin{aligned}&\left\| \nabla _{{\mathcal {X}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \right\| _F \nonumber \\&\quad =\left\| \nabla _{{\mathcal {X}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) -\nabla _{{\mathcal {X}}}\varPsi ({\mathcal {X}}^{q+1}, {\mathcal {Y}}^q,{\mathcal {Z}}^q,{\mathcal {U}}^q,{\mathcal {V}}^q)\right\| _F \nonumber \\&\quad \le \sum _{k=1}^p\left\| \nabla _{{\mathcal {X}}}\varGamma _k({\mathcal {X}}^{q+1},{\mathcal {Y}}^{q+1},{\mathcal {Z}}^{q+1})-\nabla _{{\mathcal {X}}}\varGamma _k({\mathcal {X}}^{q+1},{\mathcal {Y}}^q,{\mathcal {Z}}^q)\right\| _F \nonumber \\&\quad \le \sum _{k=1}^p \vartheta _k\left\| (\widehat{{\mathcal {Y}}}^{q+1})^{(k)}\right\| _F \left\| (\widehat{{\mathcal {Z}}}^{q+1})^{(k)}-(\widehat{{\mathcal {Z}}}^{q})^{(k)}\right\| _F \nonumber \\&\qquad +\left\| {\mathcal {X}}^{q+1}\right\| _F\sum _{k=1}^p\vartheta _k\left\| (\widehat{{\mathcal {Y}}}^{q+1})^{(k)}\left( (\widehat{{\mathcal {Y}}}^{q+1})^{(k)}\right) ^* -(\widehat{{\mathcal {Y}}}^q)^{(k)}\left( (\widehat{{\mathcal {Y}}}^q)^{(k)}\right) ^* \right\| _F \nonumber \\&\qquad +\sum _{k=1}^p\vartheta _k\left\| (\widehat{{\mathcal {Z}}}^q)^{(k)}\right\| _F\left\| (\widehat{{\mathcal {Y}}}^{q+1})^{(k)}-(\widehat{{\mathcal {Y}}}^q)^{(k)}\right\| _F \nonumber \\&\quad \le \sigma _{\max }(L)\left\| {\mathcal {Y}}^{q+1}\right\| _F \sum _{k=1}^p\vartheta _k\left\| (\widehat{{\mathcal {Z}}}^{q+1})^{(k)}-(\widehat{{\mathcal {Z}}}^{q})^{(k)}\right\| _F \nonumber \\&\qquad +\sigma _{\max }(L)\left\| {\mathcal {X}}^{q+1}\right\| _F\left( \big \Vert {\mathcal {Y}}^{q+1}\big \Vert _F+\big \Vert {\mathcal {Y}}^{q}\big \Vert _F\right) \sum _{k=1}^p\vartheta _k\left\| (\widehat{{\mathcal {Y}}}^{q+1})^{(k)}-(\widehat{{\mathcal {Y}}}^q)^{(k)}\right\| _F \nonumber \\&\qquad +\sigma _{\max }(L)\left\| {\mathcal {Z}}^{q}\right\| _F\sum _{k=1}^p \vartheta _k\left\| (\widehat{{\mathcal {Y}}}^{q+1})^{(k)}-(\widehat{{\mathcal {Y}}}^q)^{(k)}\right\| _F \nonumber \\&\quad \le \sigma _{\max }^2(L)\max _{1\le k\le p}\{\vartheta _k\} \left\{ \big \Vert {\mathcal {X}}^{q+1}\big \Vert _F\left( \big \Vert {\mathcal {Y}}^{q+1}\big \Vert _F+\big \Vert {\mathcal {Y}}^{q}\big \Vert _F\right) \left\| {\mathcal {Y}}^{q+1}-{\mathcal {Y}}^{q}\right\| _F\right. \nonumber \\&\qquad +\left. \left\| {\mathcal {Y}}^{q+1}\right\| _F \left\| {\mathcal {Z}}^{q+1}-{\mathcal {Z}}^q\right\| _F+\left\| {\mathcal {Z}}^{q}\right\| _F\left\| {\mathcal {Y}}^{q+1}-{\mathcal {Y}}^{q}\right\| _F\right\} \nonumber \\&\quad \le {\hat{c}}c\left\| {\mathcal {Z}}^{q+1}-{\mathcal {Z}}^q\big \Vert _F+{\hat{c}}c(2c^2+1)\big \Vert {\mathcal {Y}}^{q+1}-{\mathcal {Y}}^{q}\right\| _F. \end{aligned}$$
(6.23)

We obtain the desired result (6.16).

Now we prove (6.17). Similarly, we have

$$\begin{aligned} \nabla _{{\mathcal {Y}}}\varGamma _k({\mathcal {X}},{\mathcal {Y}},{\mathcal {Z}}) =\left( \left( \widehat{{\mathcal {X}}}^{(k)}\right) ^* \widehat{{\mathcal {X}}}^{(k)}+\rho I\right) \bullet {\mathscr {N}}_{L_k}(\mathbf{y}) -\left( \left( \widehat{{\mathcal {X}}}^{(k)}\right) ^* \widehat{{\mathcal {Z}}}^{(k)}\right) \cdot \mathrm{tube}\left( L_{k\cdot }^* \right) \nonumber \\ \end{aligned}$$
(6.24)

with

$$\begin{aligned} {\mathscr {N}}_{L_k}(\mathbf{y})=\left[ \begin{array}{ccc} \mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{y}_{11})\right) &{}\cdots &{}\mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{y}_{1n})\right) \\ \mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{y}_{21})\right) &{}\cdots &{}\mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{y}_{2n})\right) \\ \vdots &{}\vdots &{}\vdots \\ \mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{y}_{r1})\right) &{}\cdots &{}\mathrm{tube}\left( L_{k\cdot }^* L_{k\cdot }\mathrm{vec}(\mathbf{y}_{rn})\right) \\ \end{array} \right] , \end{aligned}$$

which implies

$$\begin{aligned}&\left\| \nabla _{{\mathcal {Y}}}\varGamma _k({\mathcal {X}}^{q+1},{\mathcal {Y}}^{q+1},{\mathcal {Z}}^{q+1})-\nabla _{{\mathcal {Y}}}\varGamma _k({\mathcal {X}}^{q+1},{\mathcal {Y}}^{q+1},{\mathcal {Z}}^q)\right\| _F \nonumber \\&\quad \le \left\| \mathrm{tube}\left( L_{k\cdot }^* \right) \right\| \left\| (\widehat{{\mathcal {X}}}^{q+1})^{(k)}\right\| _F \left\| (\widehat{{\mathcal {Z}}}^{q+1})^{(k)}-(\widehat{{\mathcal {Z}}}^q)^{(k)}\right\| _F \nonumber \\&\quad =\vartheta _k\left\| (\widehat{{\mathcal {X}}}^{q+1})^{(k)}\right\| _F \left\| (\widehat{{\mathcal {Z}}}^{q+1})^{(k)}-(\widehat{{\mathcal {Z}}}^q)^{(k)}\right\| _F. \end{aligned}$$
(6.25)

Similar to the optimal point \({\mathcal {X}}^{q+1}\), we also have \(\nabla _{{\mathcal {Y}}}\varPsi ({\mathcal {X}}^{q+1}, {\mathcal {Y}}^{q+1},{\mathcal {Z}}^q,{\mathcal {U}}^q,{\mathcal {V}}^q)=0\). Consequently, by (6.25), we have

$$\begin{aligned} \left\| \nabla _{{\mathcal {Y}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \right\| _F&\le \sum _{k=1}^p\left\| \nabla _{{\mathcal {Y}}}\varGamma _k({\mathcal {X}}^{q+1},{\mathcal {Y}}^{q+1},{\mathcal {Z}}^{q+1})-\nabla _{{\mathcal {Y}}}\varGamma _k({\mathcal {X}}^{q+1},{\mathcal {Y}}^{q+1},{\mathcal {Z}}^{q})\right\| \\&\le \sum _{k=1}^p\vartheta _k\left\| (\widehat{{\mathcal {X}}}^{q+1})^{(k)}\right\| _F \left\| (\widehat{{\mathcal {Z}}}^{q+1})^{(k)}-(\widehat{{\mathcal {Z}}}^q)^{(k)}\right\| _F \\&\le {\hat{c}}c\left\| {\mathcal {Z}}^{q+1}-{\mathcal {Z}}^{q}\right\| _F, \end{aligned}$$

which means (6.17) holds. \(\square \)

Proposition A.6

Let \(\left\{ {\mathcal {W}}^q\right\} \) be a sequence generated by Algorithm 1. Then for every q, we have

$$\begin{aligned} \big \Vert \nabla _{{\mathcal {Z}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \big \Vert _F\le \beta _1\big \Vert {\mathcal {U}}^{q+1}-{\mathcal {U}}^{q}\big \Vert _F+ \beta _2\big \Vert {\mathcal {V}}^{q+1}-{\mathcal {V}}^{q}\big \Vert _F. \end{aligned}$$
(6.26)

Proof

By the definition of \(\varPsi ({\mathcal {W}})\) and \(f^q\) given in Proposition A.3, we have

$$\begin{aligned} \nabla _{{\mathcal {Z}}_{\varOmega ^c}}\varPsi ({\mathcal {W}})=({\mathcal {Z}}-{\mathcal {X}}\circledast _{L}{\mathcal {Y}})_{\varOmega ^c}+\beta _1\left( {\mathcal {Z}}-{\mathcal {U}}\right) _{\varOmega ^c}+\beta _2\left( {\mathcal {Z}}-{\mathcal {U}}\right) _{\varOmega ^c}. \end{aligned}$$

Since \(\nabla _{{\mathcal {Z}}_{\varOmega ^c}}\varPsi ({\mathcal {X}}^{q+1},{\mathcal {Y}}^{q+1},{\mathcal {Z}}^{q+1},{\mathcal {U}}^{q},{\mathcal {V}}^{q})=0\), it holds that

$$\begin{aligned}&\big \Vert \nabla _{{\mathcal {Z}}_{\varOmega ^c}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \big \Vert _F \nonumber \\&\quad =\left\| \nabla _{{\mathcal {Z}}_{\varOmega ^c}}\varPsi \left( {\mathcal {W}}^{q+1}\right) -\nabla _{{\mathcal {Z}}_{\varOmega ^c}}\varPsi ({\mathcal {X}}^{q+1},{\mathcal {Y}}^{q+1},{\mathcal {Z}}^{q+1},{\mathcal {U}}^{q},{\mathcal {V}}^{q})\right\| _F \nonumber \\&\quad =\beta _1\big \Vert ({\mathcal {U}}^{q+1})_{\varOmega ^c}-({\mathcal {U}}^{q})_{\varOmega ^c}\big \Vert _F+\beta _2\big \Vert ({\mathcal {V}}^{q+1})_{\varOmega ^c}-({\mathcal {V}}^{q})_{\varOmega ^c}\big \Vert _F \nonumber \\&\quad \le \beta _1\big \Vert {\mathcal {U}}^{q+1}-{\mathcal {U}}^{q}\big \Vert _F+ \beta _2\big \Vert {\mathcal {V}}^{q+1}-{\mathcal {V}}^{q}\big \Vert _F. \end{aligned}$$

We obtain the desired result and complete the proof. \(\square \)

Proposition A.7

Let \(\left\{ {\mathcal {W}}^q\right\} \) be a sequence generated by Algorithm 1. Then for every q, we have

$$\begin{aligned} \big \Vert \nabla _{{\mathcal {U}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \big \Vert _F=\big \Vert \nabla _{{\mathcal {V}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \big \Vert _F=0. \end{aligned}$$
(6.27)

Proof

From the structure of \(\varPsi \), we know that

$$\begin{aligned} \nabla _{{\mathcal {U}}}\varPsi ({\mathcal {W}})=\beta _1({\mathcal {U}}-{\mathcal {Z}})+\mu _1\mathrm{fold}\left( H^* H{\mathcal {U}}^{(1)},\ldots ,H^* H{\mathcal {U}}^{(p)}\right) , \end{aligned}$$

which implies, together with the fact \(\nabla _{{\mathcal {U}}}\varPsi ({\mathcal {X}}^{q+1},{\mathcal {Y}}^{q+1},{\mathcal {Z}}^{q+1},{\mathcal {U}}^{q+1},{\mathcal {V}}^{q})=0\), that \(\nabla _{{\mathcal {U}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) =0\), i.e., \(\big \Vert \nabla _{{\mathcal {U}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \big \Vert _F=0\). Clearly, \(\big \Vert \nabla _{{\mathcal {V}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \big \Vert _F=0\) can be proved similarly. \(\square \)

Theorem A.3

(Relative error property) Let \(\left\{ {\mathcal {W}}^q\right\} \) be a sequence generated by Algorithm 1. Then there exists \(\varrho >0\) such that

$$\begin{aligned} \left\| \nabla \varPsi \left( {\mathcal {W}}^{q+1}\right) \right\| _F\le \varrho \left\| {\mathcal {W}}^{q+1}-{\mathcal {W}}^{q}\right\| _F, \end{aligned}$$
(6.28)

holds for every q.

Proof

It is obvious that

$$\begin{aligned} \left\| \nabla \varPsi \left( {\mathcal {W}}^{q+1}\right) \right\| _F^2&=\left\| \nabla _{{\mathcal {X}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \right\| _F^2+\left\| \nabla _{{\mathcal {Y}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \right\| _F^2\\&\quad +\left\| \nabla _{{\mathcal {Z}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \right\| _F^2+\left\| \nabla _{{\mathcal {U}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \right\| _F^2+\left\| \nabla _{{\mathcal {V}}}\varPsi \left( {\mathcal {W}}^{q+1}\right) \right\| _F^2. \end{aligned}$$

It follows from Propositions A.5A.6, and A.7. \(\square \)

Theorem A.4

(Convergence to a stationary point) Let \(\left\{ {\mathcal {W}}^q\right\} \) be a sequence generated by Algorithm 1. Then the sequence \(\left\{ {\mathcal {W}}^q\right\} \) has a finite length, i.e.,

$$\begin{aligned} \sum _{k=1}^{+\infty }\big \Vert {\mathcal {W}}^{q+1}-{\mathcal {W}}^q\big \Vert _F<+\infty , \end{aligned}$$

and hence \(\left\{ {\mathcal {W}}^q\right\} \) is a Cauchy sequence which converges to a stationary point of (4.4).

Proof

It is obvious that \(\varPsi \) satisfies the Kurdyka-Łojasiewicz inequality, since \(\varPsi (\cdot )\) is a semi-algebraic function. Moreover, by Theorems A.2 and A.3, we know that all conditions in [1, Theorem 2.9] are satisfied, and hence the desired result follows. \(\square \)

Theorem A.5

(Local convergence to global minima) For each \(\delta _0>0\), there exist \(\delta \in (0,\delta _0)\) and \(\eta >0\) such that for the starting point \({\mathcal {W}}^0\) satisfying \(\big \Vert {\mathcal {W}}^0-{\mathcal {W}}^{\star }\big \Vert _F<\delta \) and \({\min }\;\varPsi ({\mathcal {W}})<\varPsi ({\mathcal {W}}^0)<{\min }\;\varPsi ({\mathcal {W}})+\eta \), the sequence \(\left\{ {\mathcal {W}}^q\right\} \) generated by Algorithm 1 satisfies

  1. (i).

    \({\mathcal {W}}^q\in {\mathbb {N}}({\mathcal {W}}^{\star },\delta _0)\) for every q;

  2. (ii).

    \(\left\{ {\mathcal {W}}^q\right\} \) converges to some \({{\mathcal {W}}^{\infty }}\) and \(\sum _{q=1}^{+\infty }\big \Vert {\mathcal {W}}^{q+1}-{\mathcal {W}}^q\big \Vert _F<+\infty \);

  3. (iii).

    \(\varPsi ({{\mathcal {W}}^{\infty }})=\varPsi ({\mathcal {W}}^{\star })\).

Proof

It follows from [1, Theorem 2.12]. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Ling, C. & Xie, W. Tensor Completion via A Generalized Transformed Tensor T-Product Decomposition Without t-SVD. J Sci Comput 93, 47 (2022). https://doi.org/10.1007/s10915-022-02006-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02006-3

Keywords

Navigation