Skip to main content
Log in

High-Order ADI-FDTD Schemes for Maxwell’s Equations with Material Interfaces in Two Dimensions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we apply the immersed interface method (IIM) and the hierarchical derivative matching (HDM) method, respectively, to restore the accuracy of the high-order alternating direction implicit finite-difference time-domain (ADI-FDTD) scheme of the 2D Maxwell’s equations with material interfaces. For the case of discontinuous permittivity \(\varepsilon \) and continuous permeability \(\mu \), we propose four high-order schemes. Two of them are of second order in time and fourth order in space (ADI-IIM-FDTD(2,4) scheme and ADI-HDM-FDTD(2,4) scheme). Others are of fourth order both in time and space (ADI-IIM-FDTD(4,4) scheme and ADI-HDM-FDTD(4,4) scheme). For the case of discontinuous permittivity \(\varepsilon \) and permeability \(\mu \), the (2,4) scheme and the (4,4) scheme are constructed as well (ADI-HDM-FDTD-X(2,4) scheme and ADI-HDM-FDTD-X(4,4) scheme). The proposed six schemes maintain the advantages of ADI-FDTD method such as unconditional stability and computational efficiency. Numerical examples are given to verify the performance of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chen, W., Li, X., Liang, D.: Energy-conserved splitting FDTD methods for Maxwell’s equations. Numer. Math. 108, 445–485 (2008)

    Article  MathSciNet  Google Scholar 

  2. Deng, S.: On the immersed interface method for solving time-domain Maxwell’s equations in materials with curved dielectric interfaces. Comput. Phys. Commun. 179, 791–800 (2008)

    Article  MathSciNet  Google Scholar 

  3. Deng, S., Li, Z., Pan, K.: An ADI-Yee’s scheme for Maxwell’s equations with discontinuous coefficients. J. Comput. Phys. 438, 110356 (2021)

    Article  MathSciNet  Google Scholar 

  4. Driscoll, T.A., Fornberg, B.: A block pseudo-spectral method for Maxwell’s equations I. One-dimensional case. J. Comput. Phys. 140(1), 47–65 (1998)

    Article  MathSciNet  Google Scholar 

  5. Driscoll, T.A., Fornberg, B.: Block pseudo-spectral methods for Maxwell’s equations II: two-dimensional discontinuous-coefficient case. SIAM J. Sci. Comput. 21, 1146–1167 (1999)

    Article  MathSciNet  Google Scholar 

  6. Feng, H., Long, G., Zhao, S.: An augmented matched interface and boundary (MIB) method for solving elliptic interface problem. J. Comput. Appl. Math. 361, 426–443 (2019)

    Article  MathSciNet  Google Scholar 

  7. Feng, H., Zhao, S.: A fourth order finite difference method for solving elliptic interface problems with the FFT acceleration. J. Comput. Phys. 419, 109677 (2020)

    Article  MathSciNet  Google Scholar 

  8. Fornberg, B.: Calculation of weights in finite difference formulas. SIAM Rev. 40(3), 685–691 (1998)

    Article  MathSciNet  Google Scholar 

  9. Hirono, T., Lui, W., Seki, S., Yoshikuni, Y.: A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator. IEEE Trans. Microw. Theory Tech. 49(9), 1640–1648 (2001)

    Article  Google Scholar 

  10. Hirono, T., Yoshikuni, Y.: Accurate modeling of dielectric interfaces by the effective permittivities for the fourth-order symplectic finite-difference time-domain method. Appl. Opt. 46(9), 1514–1524 (2007)

    Article  Google Scholar 

  11. Hwang, K.P., Cangellaris, A.C.: Effective permittivities for second-order accurate FDTD equations at dielectric interfaces. IEEE Microwaves Wirel. Commun. 11(4), 158–160 (2001)

    Article  Google Scholar 

  12. Kong, Y., Chu, Q., Li, R.: High-order unconditionally stable two-step leapfrog ADI-FDTD methods and numerical analysis. IEEE Trans. Antennas Propag. 61(10), 5135–5143 (2013)

    Article  MathSciNet  Google Scholar 

  13. Law, Y.M., Marques, A.N., Nave, J.C.: Treatment of complex interfaces for Maxwell’s equations with continuous coefficients using the correction function method. J. Sci. Comput. 82, 56 (2020). https://doi.org/10.1007/s10915-020-01148-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, Z., Mayo, A.: ADI methods for heat equations with discontinuities along an arbitrary interface. Am. Math. Soc. 48(1), 311–315 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Liang, D., Yuan, Q.: The spatial fourth-order energy-conserved S-FDTD scheme for Maxwell’s equations. J. Comput. Phys. 243, 344–364 (2013)

    Article  MathSciNet  Google Scholar 

  16. Liu, J., Zheng, Z.: A dimension by dimension splitting immersed interface method for heat conduction equation with interfaces. J. Comput. Appl. Math. 261, 221–231 (2014)

    Article  MathSciNet  Google Scholar 

  17. Liu, Q., Chen, Z., Yin, W.: An arbitrary-order LOD-FDTD method and its stability and numerical dispersion. IEEE Trans. Antennas Propag. 57(8), 2409–2417 (2009)

    Article  MathSciNet  Google Scholar 

  18. Namiki, T.: A new FDTD algorithm based on alternating-direction implicit method. IEEE Trans. Microwave Theory Tech. 47(10), 441–443 (1999)

    Article  Google Scholar 

  19. Nguyen, D.D., Zhao, S.: Time-domain matched interface and boundary (MIB) modeling of Debye dispersive media with curved interfaces. J. Comput. Phys. 278, 298–325 (2014)

    Article  MathSciNet  Google Scholar 

  20. Shibayama, J., Muraki, M., Yamauchi, J., Nakano, H.: Efficient implicit FDTD algorithm based on locally one-dimensional scheme. Electron. Lett. 41(19), 1046–1047 (2005)

    Article  Google Scholar 

  21. Tan, E.L.: ADI-FDTD method with fourth order accuracy in time. IEEE Microwave Wirel. Componet. 18(5), 296–298 (2008)

    Article  Google Scholar 

  22. Virta, K., Mattsson, K.: Acoustic wave propagation in complicated geometries and heterogeneous media. J. Sci. Comput. 61, 90–118 (2014)

    Article  MathSciNet  Google Scholar 

  23. Wei, Z., Li, C., Zhao, S.: A spatially second order alternating direction implicit (ADI) method for solving three dimensional parabolic interface problems. Comput. Math. Appl. 75(6), 2173–2192 (2018)

    Article  MathSciNet  Google Scholar 

  24. Wiegmann, A., Bube, P.: The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions. SIAM J. Numer. Anal. 37(3), 827–862 (2000)

    Article  MathSciNet  Google Scholar 

  25. Xie, Z., Chan, C., Zhang, B.: An explicit fourth-order stagger finite-difference time-domain method for Maxwell’s equations. J. Comput. Appl. Math. 147(1), 75–98 (2002)

    Article  MathSciNet  Google Scholar 

  26. Yee, J.S.: Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media. IEEE Trans. Antennas Propag. 3(14), 302–307 (1966)

    MATH  Google Scholar 

  27. Yefet, A., Petropoulos, P.G.: A non-dissipatibe staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell’s equations. J. Comput. Phys. 168, 286–315 (2001)

    Article  MathSciNet  Google Scholar 

  28. Yefet, A., Turkel, E.: Fourth order compact implicit method for the Maxwell equations with discontinuous coefficients. Appl. Numer. Math. 33, 125–134 (2000)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Y., Nguyen, D.D., Du, K., Xu, J., Zhao, S.: Time-domain numerical solutions of Maxwell interface problems with discontinuous electromagnetic waves. Adv. Appl. Math. Mech. 8(3), 353–385 (2016)

    Article  MathSciNet  Google Scholar 

  30. Zhao, S.: High order matched interface and boundary methods for the Helmholtz equation in media with arbitrarily curved interfaces. J. Comput. Phys. 229, 3155–3170 (2010)

    Article  MathSciNet  Google Scholar 

  31. Zhao, S.: A matched alternating direction implicit (ADI) method for solving the heat equation with interfaces. J. Sci. Comput. 63(1), 118–137 (2015)

    Article  MathSciNet  Google Scholar 

  32. Zhao, S., Wei, G.: High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces. J. Comput. Phys. 200(1), 60–103 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

W. Li’s work was supported by National Natural Science Foundation of China [Grant Numbers 11701282 and 61673011] and Natural Science Foundation of Jiangsu Province [Grant Number BK20160819].

Funding

Wanshan Li’s work was supported by National Natural Science Foundation of China (11701282 and 61673011) and Natural Science Foundation of Jiangsu Province (BK20160819).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanshan Li.

Ethics declarations

Conflict of interest

No conflict of interest is involved with this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, N., Li, W. High-Order ADI-FDTD Schemes for Maxwell’s Equations with Material Interfaces in Two Dimensions. J Sci Comput 93, 51 (2022). https://doi.org/10.1007/s10915-022-02011-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02011-6

Keywords

Navigation