Skip to main content
Log in

Stochastic Regularized Newton Methods for Nonlinear Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study stochastic regularized Newton methods to find zeros of nonlinear equations, whose exact function information is normally expensive to calculate but approximations can be easily accessed via calls to stochastic oracles. To handle the potential singularity of Jacobian approximations, we compute a regularized Newton step at each iteration. Then we take a unit step if it can be accepted by an inexact line search condition, and a preset step otherwise. We investigate the global convergence properties and the convergence rate of the proposed algorithm with high probability. We also propose a stochastic regularized Newton method incorporating a variance reduction technique and establishing the corresponding sample complexities in terms of total numbers of stochastic oracle calls to find an approximate solution. Finally, we report some numerical results and demonstrate the promising performances of the two proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets Adult, Gisette and RCV1 analyzed during the current study are available in http://archive.ics.uci.edu/ml/datasets.php. The dataset CINA analyzed during the current study is available in http://www.causality.inf.ethz.ch/data/CINA.html.

References

  1. Aliprantis, C.D., Border, K.C.: Infinite dimensional analysis. Springer Berlin, third ed. A hitchhiker’s guide (2006)

  2. Allen-Zhu, Z., Hazan, E.: Variance reduction for faster non-convex optimization. In: ICML (2016)

  3. Behling, R., Iusem, A.N.: The effect of calmness on the solution set of systems of nonlinear equations. Math. Program. 137(1), 155–165 (2013)

  4. Bianchi, P.: Ergodic convergence of a stochastic proximal point algorithm. SIAM J. Optim. 26(4), 2235–2260 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Causality workbench team (2008). A marketing dataset. http://www.causality.inf.ethz.ch/data/CINA.html

  6. Chen, S., Pang, L.-P., Guo, F.-F., Xia, Z.-Q.: Stochastic methods based on Newton method to the stochastic variational inequality problem with constraint conditions. Math. Comput. Model. 55(3), 779–784 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dvurechensky, P., Gasnikov, A.: Stochastic intermediate gradient method for convex problems with stochastic inexact oracle. J. Optim. Theory App. 171(1), 121–145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan, J.: Accelerating the modified Levenberg-Marquardt method for nonlinear equations. Math. Comput. 83(287), 1173–1187 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the NIPS 2003 feature selection challenge. In: Advances in NIPS (pp. 545-552) (2005)

  10. Iusem, A.N., Jofré, A., Oliveira, R.I., Thompson, P.: Extragradient method with variance reduction for stochastic variational inequalities. SIAM J. Optim. 27(2), 686–724 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iusem, A.N., Jofré, A., Oliveira, R.I., Thompson, P.: Variance-based extragradient methods with line search for stochastic variational inequalities. SIAM J. Optim. 29(1), 175–206 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iusem, A.N., Jofré, A., Thompson, P.: Incremental constraint projection methods for monotone stochastic variational inequalities. Math. Oper. Res. 44(1), 236–263 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Jiang, H., Xu, H.: Stochastic approximation approaches to the stochastic variational inequality problem. IEEE Trans. Automat. Contr. 53(6), 1462–1475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  15. Lan, G.: First-order and Stochastic Optimization Methods for Machine Learning. Springer, Berlin (2020)

    Book  MATH  Google Scholar 

  16. Lee, J.D., Lin, Q., Ma, T., Yang, T.: Distributed stochastic variance reduced gradient methods by sampling extra data with replacement. J. Mach. Learn. Res. 18(122), 1–43 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A new benchmark collection for text categorization research. J. Math. Learn. Res. 5, 361–397 (2004)

    Google Scholar 

  18. Li, X., Zhao, T., Arora, R., Liu, H., Haupt, J.: Stochastic variance reduced optimization for nonconvex sparse learning. ICML 48 (pp. 917-925) (2016)

  19. Lord, G., Malham, S.J.A., Wiese, A.: Efficient strong integrators for linear stochastic systems. SIAM J. Numer. Anal. 46(6), 2892–2919 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Comput., 4(3), https://doi.org/10.1137/0904038 (1983)

  21. Mukherjee, I., Canini, K., Frongillo, R., Singer, Y.: Parallel boosting with momentum. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 17-32). Springer, Berlin, Heidelberg (2013, September)

  22. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nguyen, L.M., Liu, J., Scheinberg, K., Takác̆, M.: SARAH: A novel method for machine learning problems using stochastic recursive gradient. In: ICML, 2613-2621 (2017, July)

  24. Nocedal, J., Wight, S.: Numerical Optimization. Springer, Berlin (2006)

    Google Scholar 

  25. Nunno, G.D., Zhang, T.: Approximations of stochastic partial differential equations. Ann. Appl. Probab. 26(3), 1443–1466 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Øksendal, B.K.: Stochastic differential equations: an introduction with applications. J. Am. Stat. Assoc. 82(399), 948 (1987)

    Article  Google Scholar 

  27. Papini, M., Binaghi, D., Canonaco, G., Pirotta, M., Restelli, M.: Stochastic variance-reduced policy gradient. In: ICML (Vol. 80, pp. 4026-4035) (2018)

  28. Paquette, C., Scheinberg, K.: A stochastic line search method with convergence rate analysis. SIAM J. Optim. 30(1), 349–376 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reddi, S.J., Sra, S., Poczos, B., Smola, A.J.: Proximal stochastic methods for nonsmooth nonconvex finite-sum optimization. In: NeurIPS (pp. 1145-1153) (2016)

  30. Ross, S.M.: Introduction to Stochastic Dynamic Progrmaming. Academic Press (1983)

    Google Scholar 

  31. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on stochastic programming: modeling and theory. MOS-SIAM Series on Optimization (2009)

  32. Tang, J., Ma, C.: A smoothing Newton method for solving a class of stochastic linear complementarity problems. Nonlinear Anal-Real World Appl 12(6), 3585–3601 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tran-Dinh, Q., Pham N.H., Nguyen, L.: Stochastic Gauss-Newton Algorithms for Nonconvex Compositional Optimization. In: ICML (2020)

  34. Tropp, J.A.: User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12(4), 389–434 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ueda, K., Yamashita, N.: On a global complexity bound of the levenberg-marquardt method. J. Optim. Theory Appl. 147(3), 443–453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vaswani, S., Mishkin, A., Laradji, I., Schmidt, M., Gidel, G., Lacoste-Julien, S.: Painless stochastic gradient: interpolation, line search, and convergence rates. arXiv preprint arXiv:1905.09997 (2019)

  37. Wang, Z., Zhou, Y., Liang, Y., Lan, G.: Stochastic variance-reduced cubic regularization for nonconvex optimization. nt. Conf. Artif. Intell. Stat., 2731-2740 (2019)

  38. Ypma, T.J.: Historical development of the Newton-Raphson method. SIAM Rev. 37(4), 531–551 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, J., Xiao, L., Zhang, S.: Adaptive stochastic variance reduction for subsampled newton method with cubic regularization. Optimization and Control, ArXiv (2018)

  40. Zhang, J., Xiao, L.: A stochastic composite gradient method with incremental variance reduction. Adv. NeurIPS 32, 9078–9088 (2019)

    Google Scholar 

  41. Zhang, J., Xiao, L.: Stochastic Variance-reduced Prox-linear Algorithms for Nonconvex Composite Optimization. Math. Program., 1-43 (2021)

  42. Zhao, R., Fan, J.: Global complexity bound of the Levenberg-Marquardt method. Optim. Methods Softw. 31(4), 805–814 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was partially supported by the Major Key Project of PCL (No. PCL2022A05), the National Natural Science Foundation of China (11871453, 12271278, 12026604 and 11971089), and Dalian High-level Talent Innovation Project (2020RD09). The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Wang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The following lemma refers to Theorem 1.6 in [34] and is about concentration inequalities for vector- and matrix-valued martingales, respectively.

Lemma 5.1

Let \(({\mathcal {U}}_k)^m_{k=0}\) be a given filtration of the \(\sigma \)-algebra \({\mathcal {F}}\).

(i):

Let \((X_k)^m_{k=1}, X_k: \Omega \rightarrow {\mathbb {R}}^n\), be a family of random vectors, satisfying \(X_k\in {{\mathcal {U}}_k}\) and \(\sigma \in {{\mathbb {R}}^m}\) be a given vector with \(\sigma _k\ne 0\), \(k=1,\ldots ,m\). Suppose that \({\mathbb {E}}[X_k\ |{\mathcal {U}}_{k-1}]=0\), and \({\mathbb {E}}[\Vert X_k\Vert ^2\ |{\mathcal {U}}_{k-1}]\le \sigma _k^2\) almost everywhere for all \(k\in {[m]}\). Then it holds

$$\begin{aligned} {\mathbb {E}}[\Vert \sum ^{m}_{k=1}X_k\Vert ^2\ |{\mathcal {U}}_0]\le \Vert \sigma \Vert ^2,\ {\mathbb {P}}(\Vert \sum ^{m}_{k=1}X_k\Vert \ge \tau \Vert \sigma \Vert \ |{\mathcal {U}}_0)\le \tau ^{-2},\ \ \forall \tau >0 \end{aligned}$$

almost everywhere.

(ii):

Let \((X_k)^m_{k=1}\), \(X_k: \Omega \rightarrow {\mathbb {R}}^{d_1\times d_2}\), be a sequence of random matrices satisfying \(X_k\in {{\mathcal {U}}_k}\). Suppose that \({\mathbb {E}}[X_k\ |{\mathcal {U}}_{k-1}]=0\), and there exists a positive constant R such that \(\Vert X_k\Vert \le R\) almost everywhere for all \(k\in {[m]}\). Define \(\nu ^2=\max \{\Vert \sum _{k=1}^m {\mathbb {E}}(X_kX_k^T)\Vert ,\Vert \sum _{k=1}^m {\mathbb {E}}(X_k^TX_k)\Vert \}\). Then it holds

$$\begin{aligned} {\mathbb {P}}(\Vert \sum ^{m}_{k=1}X_k\Vert \ge t\ |{\mathcal {U}}_0)\le (d_1+d_2)\cdot \exp { (\frac{-t^2/2}{\nu ^2+Rt/3} )},\ \ \forall t>0 \end{aligned}$$

almost everywhere.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, X. & Zhang, L. Stochastic Regularized Newton Methods for Nonlinear Equations. J Sci Comput 94, 51 (2023). https://doi.org/10.1007/s10915-023-02099-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02099-4

Keywords

Mathematics Subject Classification

Navigation