Skip to main content
Log in

High-Order Positivity-Preserving Entropy Stable Schemes for the 3-D Compressible Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper extends a new family of high-order positivity-preserving, entropy stable spectral collocation schemes developed for the one-dimensional compressible Navier–Stokes equations in Upperman and Yamaleev (J Comput Phys 466, 2022; J Comput Phys 466, 2022) to three spatial dimensions. The proposed schemes are constructed by using a flux-limiting technique that combines a positivity-violating entropy stable method of arbitrary order of accuracy and a novel first-order positivity-preserving entropy stable finite volume-type scheme discretized on the same Legendre–Gauss–Lobatto grid points used for constructing the high-order discrete operators. The positivity-preserving and excellent discontinuity-capturing properties are achieved by adding an artificial dissipation in the form of the low- and high-order Brenner–Navier–Stokes diffusion operators. Furthermore, the new schemes are entropy conservative for smooth inviscid flows and freestream preserving. To our knowledge, this is the first family of schemes of arbitrary order of accuracy that provably guarantee both the pointwise positivity of thermodynamic variables and \(L_2\) stability for the 3-D compressible Navier–Stokes equations. Numerical results demonstrating accuracy and positivity-preserving properties of the new schemes are presented for 2-D and 3-D viscous and inviscid flows with strong discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Upperman, J., Yamaleev, N.K.: Positivity-preserving entropy stable schemes for the 1-D compressible Navier–Stokes equations: first-order approximation. J. Comput. Phys. 466 (2022)

  2. Yamaleev, N.K., Upperman, J.: Positivity-preserving entropy stable schemes for the 1-D compressible Navier–Stokes equations: high-order flux limiting. J. Comput. Phys. 466 (2022)

  3. Upperman, J., Yamaleev, N.K.: First-order positivity-preserving entropy-stable spectral collocation scheme for the 3-D compressible Navier–Stokes equations. J. Sci. Comp. 94(1) (2023)

  4. Svärd, M.: A convergent numerical scheme for the compressible Navier–Stokes equations. SIAM J. Numer. Anal. 54(3), 1484–1506 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grapsas, D., Herbin, R., Kheriji, W., Latché, J.-C.: An unconditionally stable staggered pressure correction scheme for the compressible Navier–Stokes equations. SMAI J. Comput. Math. 2, 51–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guermond, J.-L., Maier, M., Popov, B., Tomas, I.: Second-order invariant domain preserving approximation of the compressible Navier–Stokes equations. arXiv:2009.06022v1 (2020)

  7. Zhang, X.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier–Stokes equations. J. Comput. Phys. 328, 301–343 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenner, H.: Navier–Stokes revisited. Physica A 349, 60–132 (2005)

    Article  MathSciNet  Google Scholar 

  9. Feireisl, E., Vasseur, A.: New perspectives in fluid dynamics: mathematical analysis of a model proposed by Howard Brenner. In: New Directions in Mathematical Fluid Dynamics, Adv. Math. Fluid Mech., pp. 153–179 (2009)

  10. Guermond, J.-L., Popov, B.: Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 74, 284–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yamaleev, N.K., Del Rey Fernandez, D.C., Lou, J., Carpenter, M.H.: Entropy stable spectral collocation schemes for the 3-D Navier–Stokes equations on dynamic unstructured grids. J. Comput. Phys. 399, 108897 (2019)

  12. Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yamaleev, N.K., Carpenter, M.H.: A family of fourth-order entropy stable non-oscillatory spectral collocation schemes for the 1-D Navier–Stokes equations. J. Comput. Phys. 331, 90–107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, R.C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta. Numer. 12, 451–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14(5), 1252–1286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17, 1030–1037 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Upperman, J., Yamaleev, N.K.: Entropy stable artificial dissipation based on Brenner regularization of the Navier–Stokes equations. J. Comput. Phys. 393, 74–91 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Merriam, M.L.: An entropy-based approach to nonlinear stability. Tech. report TM 101086, NASA (1989)

  21. Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Parsani, M., Svärd, M., Yamaleev, N.K.: Entropy Stable Summation-by-Parts Formulations for Compressible Computational Fluid Dynamics. Handbook of Numerical Analysis, vol. 17, 495–524 (2016)

  22. Upperman, J.K.: High-order Positivity-preserving \(L_2\)-stable spectral collocation schemes for the 3-D compressible Navier–Stokes equations. Ph.D. thesis, Old Dominion University (2021)

  23. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9 (1988)

  24. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Press (2011)

  25. Ranocha, H., Dalcin, L., Parsani, M.: Fully discrete explicit locally entropy-stable schemes for the compressible Euler and Navier–Stokes equations. Comput. Math. Appl. 80, 1343–1359 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Renac, F.: BL2-Laminar shock-boundary layer interaction. In: 4th International Workshop on High-Order CFD Methods (2016)

  27. Peng, N., Yang, Y.: Effects of the Mach number on the evolution of vortex-surface fields in compressible Taylor-Green flows. Phys. Rev. Fluids 3(1) (2018)

Download references

Funding

The first author acknowledges the support from Army Research Office through grant W911NF-17-0443. The second author was supported by the Virginia Space Grant Consortium Graduate STEM Research Fellowship and the Department fo Defense Science, Mathematics and Research for Transformation (SMART) Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nail K. Yamaleev.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaleev, N.K., Upperman, J. High-Order Positivity-Preserving Entropy Stable Schemes for the 3-D Compressible Navier–Stokes Equations. J Sci Comput 95, 11 (2023). https://doi.org/10.1007/s10915-023-02136-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02136-2

Keywords

Mathematics Subject Classification

Navigation