Skip to main content
Log in

A Positivity-Preserving, Energy Stable BDF2 Scheme with Variable Steps for the Cahn–Hilliard Equation with Logarithmic Potential

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose and analyze a BDF2 scheme with variable time steps for the Cahn–Hilliard equation with a logarithmic Flory–Huggins energy potential. The lumped mass method is adopted in the space discretization to ensure that the proposed scheme is uniquely solvable and positivity-preserving. Especially, a new second order viscous regularization term is added at the discrete level to guarantee the energy dissipation property. Furthermore, the energy stability is derived by a careful estimate under the condition that \(r\le r_{\max }\). To estimate the spatial and temporal errors separately, a spatially semi-discrete scheme is proposed and a new elliptic projection is introduced, and the super-closeness between this projection and the Ritz projection of the exact solution is attained. Based on the strict separation property of the numerical solution obtained by using the technique of combining the rough and refined error estimates, the convergence analysis in \(l^{\infty }(0,T;L_h^2(\varOmega ))\) norm is established when \(\tau \le Ch\) by using the technique of the DOC kernels. Finally, several numerical experiments are carried out to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

Not applicable.

Code Availability

Not applicable.

References

  1. Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194(2), 463–506 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal.: Theory Methods Appl. 67(11), 3176–3193 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Adams, R., Fournier, J.: Sobolev Spaces. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  4. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30(1), 139–165 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT Numer. Math. 38(4), 644–662 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Blowey, J.F., Copetti, M., Elliott, C.M.: Numerical analysis of a model for phase separation of a multicomponent alloy. IMA J. Numer. Anal. 16(1), 111–139 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7(3), 287–301 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    MATH  Google Scholar 

  10. Cahn, J.W., Hilliard, J.E.: Spinodal decomposition: a reprise. Acta Metall. 19(2), 151–161 (1971)

    Google Scholar 

  11. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52(3), 546–562 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Chen, W., Jing, J., Wang, C., Wang, X., Wise, S.M.: A modified Crank–Nicolson numerical scheme for the Flory–Huggins Cahn–Hilliard model. Commun. Comput. Phys. 31(1), 60–93 (2022)

    MathSciNet  MATH  Google Scholar 

  13. Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. ESAIM: Math. Model. Numer. Anal. 54(3), 727–750 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Chen, W., Li, W., Wang, C., Wang, S., Wang, X.: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy. Res. Math. Sci. 7(3), 1–27 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Chen, W., Liu, Q., Shen, J.: Error estimates and blow-up analysis of a finite-element approximation for the parabolic-elliptic Keller–Segel system. Int. J. Numer. Anal. Model. 19(2–3), 275–298 (2022)

    MathSciNet  MATH  Google Scholar 

  16. Chen, W., Liu, Y., Wang, C., Wise, S.: Convergence analysis of a fully discrete finite difference scheme for the Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 85(301), 2231–2257 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Chen, W., Wang, C., Wang, S., Wang, X., Wise, S.M.: Energy stable numerical schemes for ternary Cahn–Hilliard system. J. Sci. Comput. 84(2), 1–36 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn–Hilliard equation with logarithmic potential. J. Comput. Phys.: X 3, 100031 (2019)

    MathSciNet  Google Scholar 

  19. Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Cheng, K., Wang, C., Wise, S.M., Wu, Y.: A third order accurate in time, BDF-type energy stable scheme for the Cahn–Hilliard equation. Numer. Math.: Theory Methods Appl. 15(2), 279–303 (2022)

    MathSciNet  MATH  Google Scholar 

  21. Cherfils, L., Miranville, A., Zelik, S.: The Cahn–Hilliard equation with logarithmic potentials. Milan J. Math. 79(2), 561–596 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Choksi, R.: Scaling laws in microphase separation of diblock copolymers. J. Nonlinear Sci. 11(3), 223–236 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992)

    MathSciNet  MATH  Google Scholar 

  24. Debussche, A., Dettori, L.: On the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal.: Theory Methods Appl. 24(10), 1491–1514 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Diegel, A.E., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137(3), 495–534 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Doi, M.: Soft Matter Physics. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  27. Dong, L., Wang, C., Wise, S.M., Zhang, Z.: A positivity-preserving, energy stable scheme for a ternary Cahn–Hilliard system with the singular interfacial parameters. J. Comput. Phys. 442, 110451 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving, energy stable and convergent numerical scheme for the Cahn–Hilliard equation with a Flory–Huggins–Degennes energy. Commun. Math. Sci. 17(4), 921–939 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving second-order BDF scheme for the Cahn–Hilliard equation with variable interfacial parameters. Commun. Comput. Phys. 28(3), 967–998 (2020). https://doi.org/10.4208/cicp.oa-2019-0037

    Article  MathSciNet  MATH  Google Scholar 

  30. Elliott, C.M., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Online Proc. Libr. (OPL) 529, 39 (1998)

    MathSciNet  Google Scholar 

  32. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99(1), 47–84 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Giacomelli, L., Otto, F.: Variatonal formulation for the lubrication approximation of the Hele–Shaw flow. Calc. Var. Partial Differ. Equ. 13(3), 377–403 (2001)

    MATH  Google Scholar 

  34. Grigorieff, R.D.: Stability of multistep-methods on variable grids. Numer. Math. 42(3), 359–377 (1983)

    MathSciNet  MATH  Google Scholar 

  35. Gurtin, M.E., Polignone, D., Vinals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(06), 815–831 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Hou, D., Qiao, Z.: A linear adaptive BDF2 scheme for phase field crystal equation (2022). arXiv:2206.07625

  37. Huang, J., Yang, C., Wei, Y.: Parallel energy-stable solver for a coupled Allen–Cahn and Cahn–Hilliard system. SIAM J. Sci. Comput. 42(5), C294–C312 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Ji, G., Yang, Y., Zhang, H.: Modeling and simulation of a ternary system for macromolecular microsphere composite hydrogels. East Asian J. Appl. Math. 11(1), 93–118 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Kang, Y., Liao, Hl.: Energy stability of BDF methods up to fifth-order for the molecular beam epitaxial model without slope selection. J. Sci. Comput. 91(2), 1–22 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12(3), 613–661 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Larson, R.: Arrested tumbling in shearing flows of liquid-crystal polymers. Macromolecules 23(17), 3983–3992 (1990)

    Google Scholar 

  42. Larson, R., Ottinger, H.: Effect of molecular elasticity on out-of-plane orientations in shearing flows of liquid-crystalline polymers. Macromolecules 24(23), 6270–6282 (1991)

    Google Scholar 

  43. Leslie, F.M.: Theory of flow phenomena in liquid crystals. In: Advances in Liquid Crystals, vol. 4, pp. 1–81. Elsevier (1979)

  44. Li, D., Qiao, Z.: On second order semi-implicit Fourier spectral methods for 2D Cahn–Hilliard equations. J. Sci. Comput. 70(1), 301–341 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Li, X., Qiao, Z., Wang, C.: Stabilization parameter analysis of a second-order linear numerical scheme for the nonlocal Cahn–Hilliard equation. IMA J. Numer. Anal. (2022)

  46. Li, X., Qiao, Z., Zhang, H.: An unconditionally energy stable finite difference scheme for a stochastic Cahn–Hilliard equation. Sci. China Math. 59(9), 1815–1834 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Liao, H., Ji, B., Wang, L., Zhang, Z.: Mesh-robustness of the variable steps BDF2 method for the Cahn–Hilliard model (2021). arXiv:2102.03731

  48. Liao, H., Ji, B., Zhang, L.: An adaptive BDF2 implicit time-stepping method for the phase field crystal model. IMA J. Numer. Anal. 42(1), 649–679 (2022)

    MathSciNet  MATH  Google Scholar 

  49. Liao, H., Kang, Y., Han, W.: Discrete gradient structures of BDF methods up to fifth-order for the phase field crystal model (2022). arXiv:2201.00609

  50. Liao, H., Tang, T., Zhou, T.: A new discrete energy technique for multi-step backward difference formulas (2021). arXiv:2102.04644

  51. Liao, H., Tang, T., Zhou, T.: Discrete energy analysis of the third-order variable-step BDF time-stepping for diffusion equations (2022). arXiv:2204.12742

  52. Liu, C., Wang, C., Wise, S., Yue, X., Zhou, S.: A positivity-preserving, energy stable and convergent numerical scheme for the Poisson–Nernst–Planck system. Math. Comput. 90(331), 2071–2106 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Liu, Y., Chen, W., Wang, C., Wise, S.M.: Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer. Math. 135(3), 679–709 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)

    MathSciNet  MATH  Google Scholar 

  55. Miranville, A.: On a phase-field model with a logarithmic nonlinearity. Appl. Math. 57(3), 215–229 (2012)

    MathSciNet  MATH  Google Scholar 

  56. Miranville, A., Zelik, S.: Robust exponential attractors for Cahn–Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27(5), 545–582 (2004)

    MathSciNet  MATH  Google Scholar 

  57. Otto, F.: Lubrication approximation with prescribed nonzero contact anggle. Commun. Partial Differ. Equ. 23(11–12), 2077–2164 (1998)

    MATH  Google Scholar 

  58. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011)

    MathSciNet  MATH  Google Scholar 

  59. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)

    MathSciNet  MATH  Google Scholar 

  60. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    MathSciNet  MATH  Google Scholar 

  61. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    MathSciNet  MATH  Google Scholar 

  62. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Systems. 28(4), 1669 (2010)

    MathSciNet  MATH  Google Scholar 

  63. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25. Springer, Berlin (2007)

    MATH  Google Scholar 

  64. Wang, W., Chen, Y., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019)

    MathSciNet  MATH  Google Scholar 

  65. Wang, W., Mao, M., Huang, Y.: Optimal a posteriori estimators for the variable step-size BDF2 method for linear parabolic equations. J. Comput. Appl. Math. 413, 114306 (2022)

    MathSciNet  MATH  Google Scholar 

  66. Wang, W., Mao, M., Wang, Z.: Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equations. Adv. Comput. Math. 47(1), 1–28 (2021)

    MathSciNet  MATH  Google Scholar 

  67. Wight, C.L., Zhao, J.: Solving Allen–Cahn and Cahn–Hilliard equations using the adaptive physics informed neural networks (2020). arXiv:2007.04542

  68. Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23(2), 572–602 (2018)

    MathSciNet  MATH  Google Scholar 

  69. Yan, Y., Li, W., Chen, W., Wang, Y.: Optimal convergence analysis of a mixed finite element method for fourth-order elliptic problems. Commun. Comput. Phys. 24(2), 510–530 (2018)

    MathSciNet  MATH  Google Scholar 

  70. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    MathSciNet  MATH  Google Scholar 

  71. Yang, X.: On a novel fully decoupled, second-order accurate energy stable numerical scheme for a binary fluid-surfactant phase-field model. SIAM J. Sci. Comput. 43(2), B479–B507 (2021)

    MathSciNet  MATH  Google Scholar 

  72. Yang, X., Zhao, J.: On linear and unconditionally energy stable algorithms for variable mobility Cahn–Hilliard type equation with logarithmic Flory–Huggins potential. Commun. Comput. Phys. 25(3), 703–728 (2017)

    MathSciNet  MATH  Google Scholar 

  73. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27(11), 1993–2030 (2017)

    MathSciNet  MATH  Google Scholar 

  74. Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: An energy stable finite element scheme for the three-component Cahn–Hilliard-type model for macromolecular microsphere composite hydrogels. J. Sci. Comput. 87(3), 1–30 (2021)

    MathSciNet  MATH  Google Scholar 

  75. Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: A second order accurate in time, energy stable finite element scheme for the Flory–Huggins–Cahn–Hilliard equation. Adv. Appl. Math. Mech. 14(6), 1477–1508 (2022)

    MathSciNet  MATH  Google Scholar 

  76. Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

    MathSciNet  MATH  Google Scholar 

  77. Zhang, Z., Ma, Y., Qiao, Z.: An adaptive time-stepping strategy for solving the phase field crystal model. J. Comput. Phys. 249, 204–215 (2013)

    MathSciNet  MATH  Google Scholar 

  78. Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110(3), 279–300 (2017)

    MathSciNet  MATH  Google Scholar 

  79. Zhu, J., Chen, L.Q., Shen, J., Tikare, V.: Coarsening kinetics from a variable-mobility Cahn–Hilliard equation: application of a semi-implicit Fourier spectral method. Phys. Rev. E 60(4), 35–64 (1999)

    Google Scholar 

Download references

Acknowledgements

W. Chen is supported by the National Natural Science Foundation of China (NSFC) 12241101 and NSFC 12071090. The authors would like to thank anonymous reviewers for their helpful comments and suggestions that have improved the manuscript.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Jing, J., Yuan, M. et al. A Positivity-Preserving, Energy Stable BDF2 Scheme with Variable Steps for the Cahn–Hilliard Equation with Logarithmic Potential. J Sci Comput 95, 37 (2023). https://doi.org/10.1007/s10915-023-02163-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02163-z

Keywords

Mathematics Subject Classification

Navigation