Skip to main content
Log in

Modeling and a Domain Decomposition Method with Finite Element Discretization for Coupled Dual-Porosity Flow and Navier–Stokes Flow

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we first propose and analyze a steady state Dual-Porosity-Navier–Stokes model, which describes both Dual-Porosity flow and free flow (governed by Navier–Stokes equation) coupled through four interface conditions, including the Beavers–Joseph interface condition. Then we propose a domain decomposition method for efficiently solving such a large complex system. Robin boundary conditions are used to decouple the Dual-Porosity equations from the Navier–Stokes equations in the coupled system. Based on the two decoupled sub-problems, a parallel Robin-Robin domain decomposition method is constructed and then discretized by finite elements. We analyze the convergence of the domain decomposition method with the finite element discretization and investigate the effect of Robin parameters on the convergence, which also provide instructions for how to choose the Robin parameters in practice. Three cases of Robin parameters are studied, including a difficult case which was not fully addressed in the literature, and the optimal geometric convergence rate is obtained. Numerical experiments are presented to verify the theoretical conclusions, illustrate how the theory can provide instructions on choosing Robin parameters, and show the features of the proposed model and domain decomposition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

Custom code.

References

  1. Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2004)

  2. Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium. Comput. Geosci. 11(3), 207–218 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47(2), 929–952 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Ambartsumyan, I., Khattatov, E., Wang, C., Yotov, I.: Stochastic multiscale flux basis for Stokes–Darcy flows. J. Comput. Phys. 401, 109011 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Arbogast, T., Hesse, M.A., Taicher, A.L.: Mixed methods for two-phase Darcy–Stokes mixtures of partially melted materials with regions of zero porosity. SIAM J. Sci. Comput. 39(2), B375–B402 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Çeşmelioğlu, A., Rivière, B.: Existence of a weak solution for the fully coupled Navier–Stokes/Darcy-transport problem. J. Differ. Equ. 252(7), 4138–4175 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Chen, J., Sun, S., Wang, X.: A numerical method for a model of two-phase flow in a coupled free flow and porous media system. J. Comput. Phys. 268, 1–16 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Chidyagwai, P., Rivière, B.: On the solution of the coupled Navier–Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198(47–48), 3806–3820 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Diegel, A.E., Feng, X., Wise, S.M.: Analysis of a mixed finite element method for a Cahn–Hilliard–Darcy–Stokes system. SIAM J. Numer. Anal. 53(1), 127–152 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Gao, Y., Han, D., He, X.-M., Rüde, U.: Unconditionally stable numerical methods for Cahn–Hilliard–Navier–Stokes–Darcy system with different densities and viscosities. J. Comput. Phys. 454, 110968 (2022)

    MathSciNet  MATH  Google Scholar 

  11. Gao, Y., He, X.-M., Mei, L., Yang, X.: Decoupled, linear, and energy stable finite element method for the Cahn–Hilliard–Navier–Stokes–Darcy phase field model. SIAM J. Sci. Comput. 40(1), B110–B137 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Girault, V., Rivière, B.: DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal 47(3), 2052–2089 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Han, D., Wang, X., Wu, H.: Existence and uniqueness of global weak solutions to a Cahn–Hilliard–Stokes–Darcy system for two phase incompressible flows in karstic geometry. J. Differ. Equ. 257(10), 3887–3933 (2014)

    MathSciNet  MATH  Google Scholar 

  14. He, X.-M., Jiang, N., Qiu, C.: An artificial compressibility ensemble algorithm for a stochastic Stokes–Darcy model with random hydraulic conductivity and interface conditions. Int. J. Numer. Meth. Eng. 121(4), 712–739 (2020)

    MathSciNet  Google Scholar 

  15. Jiang, N., Qiu, C.: An efficient ensemble algorithm for numerical approximation of stochastic Stokes–Darcy equations. Comput. Methods Appl. Mech. Eng. 343, 249–275 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Shan, L., Hou, J., Yan, W., Chen, J.: Partitioned time stepping method for a dual-porosity-Stokes model. J. Sci. Comput. 79, 389–413 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Yang, Z., Ming, J., Qiu, C., He, X.-M., Li, M.: A multigrid multilevel Monte Carlo method for Stokes–Darcy model with random hydraulic conductivity and Beavers–Joseph condition. J. Sci. Comput. 90, 68 (2022)

    MathSciNet  MATH  Google Scholar 

  18. Zhao, B., Zhang, M., Liang, C.: Global well-posedness for Navier–Stokes–Darcy equations with the free interface. Int. J. Numer. Anal. Mod. 18, 569–619 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Al Mahbub, Md. A., He, X.-M., Nasu, N.J., Qiu, C., Zheng, H.: Coupled and decoupled stabilized mixed finite element methods for non-stationary dual-porosity-Stokes fluid flow model. Int. J. Numer. Meth. Eng. 120(6), 803–833 (2019)

    Google Scholar 

  20. Armentano, M.G., Stockdale, M.L.: Approximations by mini mixed finite element for the Stokes–Darcy coupled problem on curved domains. Int. J. Numer. Anal. Mod. 18, 203–234 (2021)

    MathSciNet  MATH  Google Scholar 

  21. Ervin, V.J., Jenkins, E.W., Lee, H.: Approximation of the Stokes–Darcy system by optimization. J. Sci. Comput. 59(3), 775–794 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Girault, V., Vassilev, D., Yotov, I.: Mortar multiscale finite element methods for Stokes–Darcy flows. Numer. Math. 127(1), 93–165 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Boubendir, Y., Tlupova, S.: Domain decomposition methods for solving Stokes–Darcy problems with boundary integrals. SIAM J. Sci. Comput. 35(1), B82–B106 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Cai, M., Mu, M., Xu, J.: Numerical solution to a mixed Navier–Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47(5), 3325–3338 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Cao, Y., Gunzburger, M., He, X.-M., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes–Darcy systems. Math. Comp. 83(288), 1617–1644 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system. SIAM. J. Numer. Anal. 49(3), 1064–1084 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Qiu, C., He, X.-M., Li, J., Lin, Y.: A domain decomposition method for the time-dependent Navier–Stokes–Darcy model with Beavers–Joseph interface condition and defective boundary condition. J. Comput. Phys. 411, 109400 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, Y., Zhou, C., Qu, C., Wei, M., He, X.-M., Bai, B.: Fabrication and verification of a glass–silicon–glass micro-nanofluidic model for investigating multi-phase flow in unconventional dual-porosity porous media. Lab Chip 19, 4071–4082 (2019)

    Google Scholar 

  31. Barenblatt, G.E., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of homogeneous liquids in fissured rocks. J. App. Math. Mech. 24, 1286–1303 (1960)

    MATH  Google Scholar 

  32. Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Petrol. Eng. J. 3(3), 245–255 (1963)

    Google Scholar 

  33. Alahmadi, H.A.H.: A triple-porosity model for fractured horizontal wells. PhD thesis, Texas A &M University (2010)

  34. Lim, K.T., Aziz, K.: Matrix-fracture transfer shape factors for dual-porosity simulators. J. Petrol. Sci. Eng. 13, 169–178 (1995)

    Google Scholar 

  35. Pruess, K., Narasimhan, T.: A practical method for modeling fluid and heat flow in fractured porous media. SPE J. 25, 14–26 (1985)

    Google Scholar 

  36. Dietrich, P., Helmig, R., Sauter, M., Hötzl, H., Köngeter, J., Teutsch, G.: Flow and Transport in Fractured Porous Media. Springer, Berlin (2005)

    Google Scholar 

  37. Bukǎc, M., Yotov, I., Zunino, P.: Dimensional model reduction for flow through fractures in poroelastic media. Esaim Math. Model. Numer. Anal. 51(4), 1429–1471 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Ambartsumyan, I., Ervin, V.J., Nguyen, T., Yotov, I.: A nonlinear stokes–biot model for the interaction of a non-newtonian fluid with poroelastic media. Esaim Math. Model. Numer. Anal. 53(6), 1915–1955 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Guo, C., Wang, J., Wei, M., He, X.-M., Bai, B.: Multi-stage fractured horizontal well numerical simulation and its application in tight shale reservoirs. SPE-176714, SPE Russian Petroleum Technology Conference, Moscow, Russia (2015)

  40. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Google Scholar 

  41. Hou, J., Qiu, M., He, X.-M., Guo, C., Wei, M., Bai, B.: A dual-porosity-Stokes model and finite element method for coupling dual-porosity flow and free flow. SIAM J. Sci. Comput. 38(5), B710–B739 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximation for Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM. J. Numer. Anal. 47(6), 4239–4256 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition. Comm. Math. Sci. 8(1), 1–25 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Discacciati, M., Gerardo-Giorda, L.: Optimized Schwarz methods for the Stokes–Darcy coupling. IMA J. Numer. Anal. 38(4), 1959–1983 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Discacciati, M., Quarteroni, A., Valli, A.: Robin-Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45(3), 1246–1268 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Gunzburger, M., He, X.-M., Li, B.: On Ritz projection and multi-step backward differentiation schemes in decoupling the Stokes–Darcy model. SIAM J. Numer. Anal. 56(1), 397–427 (2018)

    MathSciNet  MATH  Google Scholar 

  47. He, X.-M., Li, J., Lin, Y., Ming, J.: A domain decomposition method for the steady-state Navier–Stokes–Darcy model with Beavers–Joseph interface condition. SIAM J. Sci. Comput. 37(5), S264–S290 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Liu, Y., Boubendir, Y., He, X.M., He, Y.: New optimized Robin-Robin domain decomposition methods using Krylov solvers for the Stokes–Darcy system. SIAM J. Sci. Comput. 44(4), B1068–B1095 (2022)

    MathSciNet  MATH  Google Scholar 

  49. Hou, J., Hu, D., He, X.M., Qiu, C.: Modeling and a Robin-type decoupled finite element method for dual-porosity-Navier–Stokes system with application to flows around multistage fractured horizontal wellbore. Comput. Meth. Appl. Mech. Eng. 388, 114248 (2022)

    MathSciNet  MATH  Google Scholar 

  50. Jäger, W., Mikelic̈, A,: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60(4), 1111–1127 (2000)

  51. Saffman, P.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 77–84 (1971)

    Google Scholar 

  52. Hou, J., Yan, W., Hu, D., He, Z.: Robin-Robin domain decomposition methods for the dual-porosity-conduit system. Adv. Comput. Math. 47(7), 1–33 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Cao, Y., Gunzburger, M., He, X.-M., Wang, X.: Robin-Robin domain decomposition methods for the steady Stokes–Darcy model with Beaver–Joseph interface condition. Numer. Math. 117(4), 601–629 (2011)

    MathSciNet  MATH  Google Scholar 

  54. Liu, Y., He, Y., Li, X., He, X.-M.: A novel convergence analysis of Robin–Robin domain decomposition method for Stokes–Darcy system with Beavers–Joseph interface condition. Appl. Math. Lett. 119, 107181 (2021)

    MathSciNet  MATH  Google Scholar 

  55. Girault, V., Raviart, P. A.: Finite Element Methods for Navier–Stokes equations. Theory and algorithms, vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986)

  56. Gunzburger, M.: Finite Element Methods for Viscous Incompressible Flows. A Guide to Theory, Practice, and Algorithms.Computer Science and Scientific Computing. Academic Press, Boston (1989)

    Google Scholar 

  57. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis. AMS Chelsea Publishing, Providence, RI, reprint of the 1984 edition (2001)

  58. Qiu, M., Qing, F., Yu, X., Hou, J., Li, D., Zhao, X.: Finite element method for the stationary dual-porosity Navier–Stokes system with Beavers–Joseph interface conditions. Comput. Math. Appl. (2023). https://doi.org/10.1016/j.camwa.2023.01.015

    Article  MathSciNet  Google Scholar 

  59. Badea, L., Discacciati, M., Quarteroni, A.: Numerical analysis of the Navier–Stokes/Darcy coupling. Numer. Math. 115(2), 195–227 (2010)

    MathSciNet  MATH  Google Scholar 

  60. Çeşmelioğlu, A., Girault, V., Rivière, B.: Time-dependent coupling of Navier–Stokes and Darcy flows. ESAIM Math. Model. Numer. Anal. 47(2), 539–554 (2013)

    MathSciNet  MATH  Google Scholar 

  61. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994)

    MATH  Google Scholar 

Download references

Funding

The first author is partially supported by NSFC grants 11701451 and 11931013. The third and fourth authors are partially supported by NSF grant DMS-1722647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming He.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Hu, D., Li, X. et al. Modeling and a Domain Decomposition Method with Finite Element Discretization for Coupled Dual-Porosity Flow and Navier–Stokes Flow. J Sci Comput 95, 67 (2023). https://doi.org/10.1007/s10915-023-02185-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02185-7

Keywords

Navigation