Skip to main content
Log in

Mixed-Primal Methods for Natural Convection Driven Phase Change with Navier–Stokes–Brinkman Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we consider a steady phase change problem for non-isothermal incompressible viscous flow in porous media with an enthalpy-porosity-viscosity coupling mechanism, and introduce and analyze a Banach spaces-based variational formulation yielding a new mixed-primal finite element method for its numerical solution. The momentum and mass conservation equations are formulated in terms of velocity and the tensors of strain rate, vorticity, and stress; and the incompressibility constraint is used to eliminate the pressure, which is computed afterwards by a postprocessing formula depending on the stress and the velocity. The resulting continuous formulation for the flow becomes a nonlinear perturbation of a perturbed saddle point linear system. The energy conservation equation is written as a nonlinear primal formulation that incorporates the additional unknown of boundary heat flux. The whole mixed-primal formulation is regarded as a fixed-point operator equation, so that its well-posedness hinges on Banach’s theorem, along with smallness assumptions on the data. In turn, the solvability analysis of the uncoupled problem in the fluid employs the Babuška–Brezzi theory, a recently obtained result for perturbed saddle-point problems, and the Banach–Nečas–Babuška Theorem, all them in Banach spaces, whereas the one for the uncoupled energy equation applies a nonlinear version of the Babuška–Brezzi theory in Hilbert spaces. An analogue fixed-point strategy is employed for the analysis of the associated Galerkin scheme, using in this case Brouwer’s theorem and assuming suitable conditions on the respective discrete subspaces. The error analysis is conducted under appropriate assumptions, and selecting specific finite element families that fit the theory. We finally report on the verification of theoretical convergence rates with the help of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, Elsevier Ltd (2003)

  2. Agyenim, F., Hewitt, N., Eames, P., Smyth, M.: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sustain. Energy Rev. 14(2), 615–628 (2010)

    Article  Google Scholar 

  3. Aldbaissy, R., Hecht, F., Mansour, G., Sayah, T.: A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity. Calcolo 55, 1–49 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015)

    Google Scholar 

  5. Almonacid, J.A., Gatica, G.N., Oyarzúa, R.: A mixed-primal finite element method for the Boussinesq problem with temperature-dependent viscosity. Calcolo 55(3), 1–42 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Almonacid, J.A., Gatica, G.N., Oyarzúa, R., Ruiz-Baier, R.: A new mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent viscosity. Netw. Heterog. Media 15(2), 215–245 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alvarez, M., Gatica, G.N., Gómez-Vargas, B., Ruiz-Baier, R.: New mixed finite element methods for natural convection with phase-change in porous media. J. Sci. Comput. 80(1), 141–174 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arnold, D.N., Brezzi, F., Douglas, J.: PEERS: A new mixed finite element method for plane elasticity. Jpn. J. Appl. Math. 1, 347–367 (1984)

    Article  MATH  Google Scholar 

  9. Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76(260), 1699–1723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Babuška, I., Gatica, G.N.: On the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differ. Equ. 19(2), 192–210 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benavides, G.A., Caucao, S., Gatica, G.N., Hopper, A.A.: A Banach spaces-based analysis of a new mixed-primal finite element method for a coupled flow-transport problem. Comput. Methods Appl. Mech. Eng. 371, 113285 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benavides, G.A., Caucao, S., Gatica, G.N., Hopper, A.A.: A new non-augmented and momentum-conserving fully-mixed finite element method for a coupled flow-transport problem. Calcolo 59(1), 6 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991)

  14. Burggraf, O.R.: Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech. 24, 113–151 (1966)

    Article  Google Scholar 

  15. Camaño, J., García, C., Oyarzúa, R.: Analysis of a momentum conservative mixed-FEM for the stationary Navier-Stokes problem. Numer. Methods Partial Differ. Equ. 37(5), 2895–2923 (2021)

    Article  MathSciNet  Google Scholar 

  16. Camaño, J., Gatica, G.N., Oyarzúa, R., Ruiz-Baier, R.: An augmented stress-based mixed finite element method for the steady state Navier-Stokes equations with nonlinear viscosity. Numer. Methods Partial Differ. Equ. 33(5), 1692–1725 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Camaño, J., Oyarzúa, R., Ruiz-Baier, R., Tierra, G.: Error analysis of an augmented mixed method for the Navier-Stokes problem with mixed boundary conditions. IMA J. Numer. Anal. 38(3), 1452–1484 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Caucao, S., Colmenares, E., Gatica, G.N., Inzunza, C.: A Banach spaces-based fully mixed finite element method for the stationary chemotaxis-Navier-Stokes problem. Preprint 2022-16, Centro de Investigación en Ingeniería Matemática (\(\text{CI}^2\)MA), Universidad de Concepción, (2022)

  19. Caucao, S., Discacciati, M., Gatica, G.N., Oyarzúa, R.: A conforming mixed finite element method for the Navier–Stokes/Darcy–Forchheimer coupled problem. ESAIM Math. Model. Numer. Anal. 54(5), 1689–1723 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Caucao, S., Gatica, G.N., Oyarzúa, R., Sánchez, N.: A fully-mixed formulation for the steady double-diffusive convection system based upon Brinkman–Forchheimer equations. J. Sci. Comput. 85(2), 44 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Caucao, S., Oyarzúa, R., Villa-Fuentes, S.: A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy. Calcolo 57(4), 36 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ciarlet, P.: Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics. Philadelphia, PA (2013)

  23. Colmenares, E., Gatica, G.N., Moraga, S.: A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem. ESAIM Math. Model. Numer. Anal. 54(5), 1525–1568 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Colmenares, E., Gatica, G.N., Oyarzúa, R.: Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem. Numer. Methods Partial Differ. Equ. 32(2), 445–478 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Colmenares, E., Neilan, M.: Dual-mixed finite element methods for the stationary Boussinesq problem. Comp. Math. Appl. 72(7), 1828–1850 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Correa, C.I., Gatica, G.N.: On the continuous and discrete well-posedness of perturbed saddle-point formulations in Banach spaces. Comput. Math. Appl. 117, 14–23 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Correa, C.I., Gatica, G.N., Ruiz-Baier, R.: New mixed finite element methods for the coupled Stokes and Poisson-Nernst-Planck equations in Banach spaces. ESAIM Math. Model. Numer. Anal., https://doi.org/10.1051/m2an/2023024

  28. Danaila, I., Moglan, R., Hecht, F., Le Masson, S.: A Newton method with adaptive finite elements for solving phase-change problems with natural convection. J. Comput. Phys. 274, 826–840 (2014)

    Article  MATH  Google Scholar 

  29. Dinniman, M.S., Asay-Davis, X.S., Galton-Fenzi, B.K., Holland, P.R., Jenkins, A., Timmermann, R.: Modeling ice shelf/ocean interaction in antarctica: a review. Oceanography 29(4), 144–153 (2016)

    Article  Google Scholar 

  30. Dutil, Y., Rousse, D.R., Salah, N.B., Lassue, S., Zalewski, L.: A review on phase-change materials: mathematical modeling and simulations. Renew. Sustain. Energy Rev. 15(1), 112–130 (2011)

    Article  Google Scholar 

  31. El-Hadda, M., Belhamadia, Y., Deteix, J., Yakoubi, D.: A projection scheme for phase change problems with convection. Comput. Math. Appl. 108, 109–122 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, 159. Springer-Verlag, New York (2004)

  33. Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. Springer-Briefs in Mathematics. Springer, Cham (2014)

  34. Gatica, G.N., Núñez, N., Ruiz-Baier, R.: New non-augmented mixed finite element methods for the Navier–Stokes–Brinkman equations using Banach spaces. J. Numer. Math., https://doi.org/10.1515/jnma-2022-0073

  35. Gatica, G.N., Oyarzúa, R., Ruiz-Baier, R., Sobral, Y.D.: Banach spaces-based analysis of a fully-mixed finite element method for the steady-state model of fluidized beds. Comput. Math. Appl. 84, 244–276 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kuchta, M.: Assembly of multiscale linear PDE operators. In: Vermolen, F.J., Vuik, C. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2019, pp. 641–650 (2021)

  37. Kuchta, M., Nordaas, M., Verschaeve, J.C., Mortensen, M., Mardal, K.-A.: Preconditioners for saddle point systems with trace constraints coupling 2d and 1d domains. SIAM J. Sci. Comput. 38, B962–B987 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lonsing, M., Verfürth, R.: On the stability of BDMS and PEERS elements. Numer. Math. 99(1), 131–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, 23. Springer-Verlag, Berlin (1994)

  40. Rakotondrandisa, A., Sadaka, G., Danaila, I.: A finite-element toolbox for the simulation of solid-liquid phase-change systems with natural convection. Comput. Phys. Commun. 253, 107188 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sadaka, G., Rakotondrandisa, A., Tournier, P.H., Luddens, F., Lothodé, C., Danaila, I.: Parallel finite-element codes for the simulation of two-dimensional and three-dimensional solid-liquid phase-change systems with natural convection. Comput. Phys. Commun. 257, 107492 (2020)

    Article  MathSciNet  Google Scholar 

  42. Scheurer, B.: Existence et approximation de points selles pour certains problémes non linéaires. RAIRO Anal. Numér. 11(4), 369–400 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schroeder, P.W., Lube, G.: Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes. J. Comput. Phys. 335, 760–779 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ulvrová, M., Labrosse, S., Coltice, N., Røaback, P., Tackley, P.J.: Numerical modelling of convection interacting with a melting and solidification front: application to the thermal evolution of the basal magma ocean. Phys. Earth Planet. Inter. 206–207, 51–66 (2012)

    Article  Google Scholar 

  45. Wang, S., Faghri, A., Bergman, T.L.: A comprehensive numerical model for melting with natural convection. Int. J. Heat Mass Transf. 53(9–10), 1986–2000 (2010)

    Article  MATH  Google Scholar 

  46. Woodfield, J., Alvarez, M., Gómez-Vargas, B., Ruiz-Baier, R.: Stability and finite element approximation of phase change models for natural convection in porous media. J. Comput. Appl. Math. 360, 117–137 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, Y., Hou, Y., Zhao, J.: Error analysis of a fully discrete finite element variational multiscale method for the natural convection problem. Comput. Math. Appl. 68(4), 543–567 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zimmerman, A.G., Kowalski, J.: Mixed finite elements for convection-coupled phase-change in enthalpy form: open software verified and applied to 2D benchmarks. Comput. Math. Appl. 84, 77–96 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Miroslav Kuchta for his invaluable assistance in the extension of the \(\hbox {FEniCS}_{{ii}}\) library to accommodate tensor-valued spaces and fractional norms on non-conforming trace meshes.

Funding

This work was partially supported by ANID-Chile through the projects Centro de Modelamiento Matemático (FB210005), and Anillo of Computational Mathematics for Desalination Processes (ACT210087); by Centro de Investigación en Ingeniería Matemática (\(\hbox {CI}^2\)MA); by the Monash Mathematics Research Fund S05802-3,951,284; and by the Australian Research Council through the Discovery Project grant DP220103160 and the Future Fellowship grant FT220100496.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel N. Gatica.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatica, G.N., Núñez, N. & Ruiz-Baier, R. Mixed-Primal Methods for Natural Convection Driven Phase Change with Navier–Stokes–Brinkman Equations. J Sci Comput 95, 79 (2023). https://doi.org/10.1007/s10915-023-02202-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02202-9

Keywords

Mathematics Subject Classification

Navigation