Skip to main content
Log in

An Oscillation-Free Bound-Preserving Discontinuous Galerkin Method for Multi-component Chemically Reacting Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

A Correction to this article was published on 04 March 2024

This article has been updated

Abstract

This paper develops an oscillation-free discontinuous Galerkin (OFDG) method for solving the multi-component chemically reacting flows. Two common governing equations are considered: reactive Euler equations and Navier–Stokes equations. Based on our recently developed high-order bound-preserving discontinuous Galerkin method in Du and Yang (J Comput Phys 469:111548, 2022), we add an extra damping term into this scheme to control the spurious oscillations. With the careful construction of the damping term, the proposed method not only achieves non-oscillatory property without sacrificing any order of accuracy but also preserves the conservative property which is the key ingredient of the bound-preserving technique developed in Du and Yang (2022). Therefore, the proposed OFDG method is well-compatible with the bound-preserving limiter in Du and Yang (2022). Similar to Liu et al. (SIAM J Sci Comput 44:A230–A259, 2022), the conservative modified exponential Runge–Kutta method is used to relax the restriction of time step sizes and preserve the conservative property of the fully discrete schemes. Numerical experiments, including one- and two-dimensional space, demonstrate the proposed method has desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Anderson, J.D.: Hypersonic and High Temperature Gas Dynamics. McGraw-Hill, New York (1989)

    Google Scholar 

  2. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  3. Cockburn, B., Shu, C.-W.: The Runge–Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM Math. Model. Numer. Anal ESAIM: M2AN 25, 337–361 (1991)

    Article  Google Scholar 

  4. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    Google Scholar 

  5. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Coffee, T.P., Heimerl, J.M.: Transport algorithms for premixed, laminar steady state flames. Combust. Flame 43, 273–289 (1981)

    Article  ADS  CAS  Google Scholar 

  7. Du, J., Wang, C., Qian, C., Yang, Y.: High-order bound-preserving discontinuous Galerkin methods for stiff multispecies detonation. SIAM J. Sci. Comput. 41, B250–B273 (2019)

    Article  MathSciNet  Google Scholar 

  8. Du, J., Yang, Y.: Third-order conservative sign-preserving and steady-state preserving time integrations and applications in stiff multispecies and multireaction detonations. J. Comput. Phys. 395, 489–510 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. Du, J., Yang, Y.: High-order bound-preserving finite difference methods for multispecies and multireaction detonations. Commun. Appl. Math. Comput. (2021). https://doi.org/10.1007/s42967-020-00117-y

    Article  Google Scholar 

  10. Du, J., Yang, Y.: High-order bound-preserving discontinuous Galerkin methods for multicomponent chemically reacting flows. J. Comput. Phys. 469, 111548 (2022)

    Article  MathSciNet  CAS  Google Scholar 

  11. Fedkiw, R.P., Merriman, B., Osher, S.: Numerical methods for a mixture of thermally perfect and/or calorically perfect gaseous species with chemical reactions, Lecture Notes in Physics (1997)

  12. Hartmann, R.: Adaptive discontinuous Galerkin methods with shock capturing for the compressible Navier Stokes equations. Int. J. Numer. Methods Fluids 51, 1131–1156 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hiltebrand, A., Mishra, S.: Entropy stable shock capturing space time discontinuous Galerkin schemes for systems of conservation laws. Numer. Math. 126, 103–151 (2014)

    Article  MathSciNet  Google Scholar 

  14. Houim, R.W., Kuo, K.K.: A low-dissipation and time-accurate method for compressible multi-component flow with variable specific heat ratios. J. Comput. Phys. 230, 8527–8553 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  15. Houim, R.W., Kuo, K.K.: A ghost fluid method for compressible reacting flows with phase change. J. Comput. Phys. 235, 865–900 (2013)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Huang, J., Shu, C.-W.: Bound-preserving modified exponential Runge–Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms. J. Comput. Phys. 361, 111–135 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Huang, J., Shu, C.-W.: Positivity-preserving time discretizations for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 78, 1811–1839 (2019)

    Article  MathSciNet  Google Scholar 

  18. Huang, J., Zhao, W., Shu, C.-W.: A third-order unconditionally positivity-preserving scheme for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 79, 1015–1056 (2019)

    Article  MathSciNet  Google Scholar 

  19. Johnsen, E., Ham, F.: Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows. J. Comput. Phys. 231, 5705–5717 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. Johnson, R., Kercher, A.: A conservative discontinuous Galerkin discretization for the chemically reacting Navier–Stokes equations. J. Comput. Phys. 423, 109826 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  21. Kee, R.J., Coltrin, M.E., Glarborg, P.: Chemically Reacting Flow: Theory and Practice. Wiley, Hoboken (2003)

    Book  Google Scholar 

  22. Krivodonova, L.: Limiters for high-order discontinuous Galerkin methods. J. Comput. Phys. 226, 879–896 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Liu, Y., Lu, J., Shu, C.-W.: An essentially oscillation-free discontinuous Galerkin method for hyperbolic systems. SIAM J. Sci. Comput. 44, A230–A259 (2022)

    Article  MathSciNet  Google Scholar 

  24. Lu, J., Liu, Y., Shu, C.-W.: An oscillation-free discontinuous Galerkin method for scalar hyperbolic conservation laws. SIAM J. Numer. Anal. 59, 1299–1324 (2021)

    Article  MathSciNet  Google Scholar 

  25. Lv, Y., See, Y.C., Ihme, M.: An entropy-residual shock detector for solving conservation laws using high-order discontinuous Galerkin methods. J. Comput. Phys. 322, 448–472 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. Lv, Y., Ihme, M.: Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion. J. Comput. Phys. 270, 105–137 (2014)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  27. Lv, Y., Ihme, M.: High-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flows. Acta Mech. Sin. 33, 486–499 (2017)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Ma, P., Lv, Y., Ihme, M.: An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows. J. Comput. Phys. 340, 330–357 (2017)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. Mathur, S., Tondon, K., Saxena, S.C.: Thermal conductivity of binary, ternary and quaternary mixtures of rare gases. Mol. Phys. 12, 569–579 (1967)

    Article  ADS  CAS  Google Scholar 

  30. McBride, B.J., Zehe, M.J., Gordon, S.: NASA Glenn Coefficients for Valculating Thermodynamic Properties of Individual Species, NASA/TP-2002-211556. NASA Glenn Research Center, Cleveland (2002)

    Google Scholar 

  31. Reed, W.H., Hill, T.R.: Triangular mesh methods for the Neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos, NM (1973)

  32. Stall, D.R., Prophet, H.: JANAF thermochemical tables. National Standard Reference Data Series (1971)

  33. Westbrook, C.K.: Chemical kinetics of hydrocarbon oxidation in gaseous detonations. Combust. Flame 46, 191210 (1982)

    Article  Google Scholar 

  34. Wilke, C.R.: A viscosity equation for gas mixtures. J. Chem. Phys. 18, 517–522 (1950)

    Article  ADS  CAS  Google Scholar 

  35. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  36. Zhu, J., Zhong, X., Shu, C.-W., Qiu, J.-X.: Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. J. Comput. Phys. 248, 200–220 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

J. Du: Research is partially supported by National Key R &D Program of China (Grant No. 2021YFA0719200). Y. Liu: Research is partially supported by NSFC Grants 12201621 and Youth Innovation Promotion Association CAS. Y. Yang: Research is partially supported by Simons Foundation 961585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of the article was revised: Grant No. for Dr. Du was incorrect. It has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Liu, Y. & Yang, Y. An Oscillation-Free Bound-Preserving Discontinuous Galerkin Method for Multi-component Chemically Reacting Flows. J Sci Comput 95, 90 (2023). https://doi.org/10.1007/s10915-023-02217-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02217-2

Keywords

Mathematics Subject Classification

Navigation