Skip to main content

Advertisement

Log in

Classification of Otoneurological Cases According to Bayesian Probabilistic Models

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

We show that Bayesian methods can be efficiently applied to the classification of otoneurological diseases and to assess attribute dependencies. A set of 38 otoneurological attributes was employed in order to use a naïve Bayesian probabilistic model and Bayesian networks with different scoring functions for the classification of cases from six otoneurological diseases. Tests were executed on the basis of tenfold crossvalidation. We obtained average sensitivities of 90%, positive predictive values of 92% and accuracies as high as 97%, which is better than our earlier tests with neural networks. Our assessments indicated that Bayesian methods have good power and potential to classify otoneurological patient cases correctly even if this is often a complicated task for the best specialists. Bayesian methods classified the current medical data and knowledge well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Webb, A. (2002). Statistical pattern recognition (2nd ed.). Chichester, England: Wiley.

    MATH  Google Scholar 

  2. Antal, P., Verrelst, H., Timmerman, D., Moreau, Y., Van Huffel, S., De Moor, B., et al. (2000). Bayesian networks in ovarian diagnosis: potentials and limitations (pp. 103–108). In: Proc Thirteenth IEEE Symposium on Computer-Based Medical Systems.

  3. Antal, P., Fannes, G., Timmerman, D., Moreau, Y., & De Moor, B. (2004). Using literature and data to learn Bayesian networks as clinical models of ovarian tumors. Artificial Intelligence in Medicine, 30, 257–281.

    Article  Google Scholar 

  4. Chapman, W. W., Fizman, M., Chapman, B. E., & Haug, P. J. (2001). A comparison of classification algorithms to automatically identify chest X-ray reports that support pneumonia. Journal of Biomedical Informatics, 34, 4–14.

    Article  Google Scholar 

  5. Cruz-Ramírez, N., Acosta-Mesa, H. G., Carrilo-Calvet, H., Nava-Fernández, L. A., & Barrientos-Martínez, R. E. (2007). Diagnosis of breast cancer using Bayesian networks: A case study. Computers in Biology and Medicine, 37, 1533–1564.

    Google Scholar 

  6. Kahn, C. E., Roberts, L. M., Shaffer, K. A., & Haddawy, P. (1997). Construction of a Bayesian network for mammographic diagnosis of breast cancer. Computers in Biology and Medicine, 27, 19–29.

    Article  Google Scholar 

  7. Ogunyemi, O., Clarke, J. R., & Webber, B. (2000). Using Bayesian networks for diagnostic reasoning in penetrating injury assessment (pp. 115–120). In: Proc Thirteenth IEEE Symposium on Computer-Based Medical Systems.

  8. Sadeghi, S., Barzi, A., Sadeghi, N., & King, B. A. (2006). Bayesian model for triage decision support. International Journal of Medical Informatics, 75, 403–411.

    Article  Google Scholar 

  9. Tucker, A., Vinciotti, V., Liu, X., & Garway-Heath, D. (2005). A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artificial Intelligence in Medicine, 34, 163–177.

    Article  Google Scholar 

  10. Verduijn, M., Peek, N., Rosseel, P. M. J., de Jonge, E., & de Mol, B. A. J. M. (2007). Prognostic Bayesian networks I: Rationale, learning procedure, and clinical use. Journal of Biomedical Informatics, 40, 609–618.

    Article  Google Scholar 

  11. Verduijn, M., Rosseel, P. M. J., Peek, N., de Jonge, E., & de Mol, B. A. J. M. (2007). Prognostic Bayesian networks II: An application in the domain of cardiac surgery. Journal of Biomedical Informatics, 40, 619–630.

    Article  Google Scholar 

  12. Wang, X. H., Zheng, B., Good, W. F., King, J. L., & Chang, Y. H. (1999). Computer-assisted diagnosis of breast cancer using a data-driven Bayesian belief network. International Journal of Medical Informatics, 54, 115–126.

    Article  Google Scholar 

  13. Papaconstantinon, C., Theocharous, G., & Mahadevan, S. (1998). An expert system for assigning patients into clinical trials based on Bayesian networks. Journal of Medical Systems, 22, 189–202.

    Article  Google Scholar 

  14. Kentala, E., Pyykkö, I., Auramo, Y., & Juhola, M. (1995). Database for vertigo. Otolaryngology and Head and Neck Surgery, 112, 383–390.

    Article  Google Scholar 

  15. Kentala, E. (1996). Characteristics of six otologic diseases involving vertigo. American Journal of Otology, 17, 883–892.

    Google Scholar 

  16. Kentala, E., Pyykkö, I., Auramo, Y., & Juhola, M. (1996). Otoneurological expert system. Annals of Otology, Rhinology and Laryngology, 105, 654–658.

    Google Scholar 

  17. Laurikkala, J., Kentala, E., Juhola, M., Pyykkö, I., & Lammi, S. (2000). Usefulness of imputation for the analysis of incomplete otoneurological data. International Journal of Medical Informatics, 58–59, 235–242.

    Article  Google Scholar 

  18. Konar, A. (2000). Artificial intelligence and soft computing: behavioral and cognitive modeling of the human brain. Boca Raton, Florida: CRC Press.

    Google Scholar 

  19. Rish, I. (2000). Advances in Bayesian learning. In: Proc the 2000 International Conference on Artificial Intelligence (IC-AI’2000) pp. 95–102. Las Vegas, Nevada: CSREA Press.

    Google Scholar 

  20. http://jbnc.sourceforge.net/

  21. http://www.cs.waikato.ac.nz/∼ml/weka/

  22. Theodoridis, S., & Koutroumbas, K. (2001). Pattern recognition and neural networks. Machine Learning and Its Applications, 169–195.

  23. Mitchell, T. M. (1997). Machine learning. New York: The McGraw-Hill Companies.

    MATH  Google Scholar 

  24. Friedman, N., Geiger, D., & Goldszmit, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131–163.

    Article  MATH  Google Scholar 

  25. Siermala, M., & Juhola, M. (2006). Techniques for biased data distributions and variable classification with neural networks applied to otoneurological data. Computer Methods and Programs in Biomedicine, 81, 128–136.

    Article  Google Scholar 

  26. Juhola, M., & Laurikkala, J. (2003). Increasing accuracy of neural network classification with principal component analysis for otoneurological and female urinary incontinence data. In: CD-ROM XVIIIth International Conference of the European Federation for Medical Informatics, Saint Malo, France, IOS Press, Amsterdam.

  27. Autio, L., Juhola, M., & Laurikkala, J. (2007). On the neural network classification of medical data and endeavour to balance non-uniform data sets with artificial data extension. Computers in Biology and Medicine, 37, 388–397.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Adjunct Professor E. Kentala, M.D., and Prof. I. Pyykkö, M.D., for otoneurological data and advice and to Prof. E. Liski, Ph.D., and A. Luoma, Ph.D., for guidance in statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martti Juhola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miettinen, K., Juhola, M. Classification of Otoneurological Cases According to Bayesian Probabilistic Models. J Med Syst 34, 119–130 (2010). https://doi.org/10.1007/s10916-008-9223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-008-9223-z

Keywords

Navigation