Skip to main content

Advertisement

Log in

Benefits of Pharmacogenomics in Drug Development—Earlier Launch of Drugs and Less Adverse Events

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Currently, pharmaceutical companies are reluctant to introduce pharmacogenomics (PGx) in their practice, since cost–benefit of PGx is obscure and methodology to use PGx in drug development has not been fully established yet. The purpose of this study is to investigate advantages obtained by introducing PGx in clinical trials. Particularly, taking Warfarin as an example, we investigate benefits of Enrichment effect that raises response rate of the drug by PGx. When response rate is raised by only 5%, cost of a clinical trial can be reduced to about 40% of a conventional clinical trial. Furthermore, since period necessary for a trial also can be reduced, development period can be shortened by about 750 days. In summary, PGx enables earlier launch of a drug with less cost, representing benefit to pharmaceutical companies, patients and public as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Evans, W. E., and Mcleod, H. L., Pharmacogenomics—Drug disposition, drug targets and side effects. N. Engl. J. Med. 348:538–549, 2003. doi:10.1056/NEJMra020526.

    Article  Google Scholar 

  2. Weinshilboum, R., Inheritance and drug response. N. Engl. J. Med. 348:529–537, 2003. doi:10.1056/NEJMra020021.

    Article  Google Scholar 

  3. Ernst, F. R., and Grizzle, A. J., Drug related morbidity and mortality: updating the cost-of-illness model. J. Am. Pharm. Assoc. 41:192–199, 2001.

    Google Scholar 

  4. Desta, Z., Zhao, X., Shin, J. G., et al., Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 41:913–958, 2002. doi:10.2165/00003088-200241120-00002.

    Article  Google Scholar 

  5. Mushiroda, T., Ohnishi, Y., Saito, S., et al., Association of VKORC1 and CYP2C9 polymorphisms with warfarin dose requirements in Japanese patients. J. Hum. Genet. 51:249–253, 2006. doi:10.1007/s10038-005-0354-5.

    Article  Google Scholar 

  6. Viroj, W., Pharmacogenetic effect of cytochrome P450 2C9 polymorphisms in different populations. Clin. Appl. Thromb. Hemost. 12 (2)219–222, 2006. doi:10.1177/107602960601200211.

    Article  Google Scholar 

  7. Cardon, L. R., Idury, R. M., Harris, T. J., et al., Testing drug response in the presence of genetic information: sampling issues for clinical trials. Pharmacogenemics. 10:503–510, 2000. doi:10.1097/00008571-200008000-00003.

    Article  Google Scholar 

  8. Fung, M., Thornton, A., Mybeck, K., et al., Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets—1960 to 1999. Drug Inf. J. 35:293–317, 2001.

    Google Scholar 

  9. Huges, S., Huges, A., Brothers, C., et al., PREDICT-1(CNA106030). The first powered, prospective trial of pharmacogenetic screening to reduce drug adverse events. Pharm. Stat. 7:121–129, 2008. doi:10.1002/pst.286.

    Article  Google Scholar 

  10. Sai, K., Sawada, J., Minami, H., et al., Irinotecan pharmacogenetics in Japanese cancer patients: Roles of UGTA1*6 and 28. Yakugaku. Zasshi. 128 (4)575–584, 2008. doi:10.1248/yakushi.128.575.

    Article  Google Scholar 

  11. Garrison, L. P. Jr., Lubeck, D., Lalla, D., et al., Cost-effectiveness analysis of traszumab in the adjuvant setting for treatment of Her2-positive breast cancer. Cancer. 110:489–498, 2007. doi:10.1002/cncr.22806.

    Article  Google Scholar 

  12. Brian, F., and Lawrence, J., Pharmacogenetics of warfarin; regulatory, scientific, and clinical issues. J. Thromb. Thrombolysis. 25:45–51, 2008. doi:10.1007/s11239-007-0104-y.

    Article  Google Scholar 

  13. DeMets, D. L., Clinical trials in the new millennium. Stat. Med. 21:2779–2787, 2002. doi:10.1002/sim.1281.

    Article  Google Scholar 

  14. McWilliam, A., Lutter, R., Nardinelli, C. et al., Health Care Savings from personalizing Medicine Using Genetic testing. AEI Bookings Joint Center for Regulatory Studies, Working Paper 6-23, 2006.

  15. Ministry of Education, Culture, Sports, Science and Technology, Leading Project. Biobank Japan. http://www.biobankjp.org/info/IC0802.pdf. 2005.

  16. Veenstra, D. L., Higashi, M. K., and Phillips, K. A., Assessing the cost-effectiveness of pharmacogenomics. AAPS. PharmSci. 29 (3)1–11, 2000.

    Google Scholar 

  17. Japan Pharmaceutical Manufacturers Association, Questionnaire about pharmacogenomics. https://www1.meteo-intergate.com/news/letter/119/, 2007

  18. Hurlen, M., Abdelnoor, M., Smith, P., et al., Warfarin, aspirin, or both after myocardial infarction. N. Engl. J. Med. 347 (13)969–974, 2002. doi:10.1056/NEJMoa020496.

    Article  Google Scholar 

  19. Gallen, C., Clinical research and development. Wyeth Pharmaceuticals, Collegeville, p. 19426, 2006.

    Google Scholar 

  20. Japan Pharmaceutical Manufacturers Association, Proposal for extension of patent period, February, 2009 http://www.jpo.go.jp/shiryou/toushin/shingikai/pdf/entyou-wg03_shiryou/entyou-wg_shiryou03.pdf.

  21. Shah, R. R., Regulatory aspects of pharmacogenetics and pharmacogenomics. Bundesgesundheitsblatt. Gesundheitsforschung. Gesundheitsschutz. 46:855–867, 2003. doi:10.1007/s00103-003-0697-z.

    Article  Google Scholar 

  22. Yatsuda Y., Sales rank of world medicines, Utobain News release, Jul 2007. http://www.utobrain.co.jp /news-release/2007/070700/NewsRelease0707.pdf

  23. The calculation is based on the data in “Commission to facilitate marketing of effective and safe medicine”, MHLW, October 30, 2006. http://www.mhlw.go.jp/shingi/2007/07/dl/s0730-10a.pdf

  24. Saito, H., Current Status and Issues of Drug Development Strategy in Japan. Drug Deliv. Syst. 1, 65–72, 2002.

    Google Scholar 

  25. Genelex. Pharmacogenetics: personalizing medicine today. In Health and DNA. Seattle, Washington U.S. 2007. http://www.healthanddna.com/professional/pharmacogenetics.html#2c9

  26. Ernst, F. R., and Grizzle, A. J., Drug-related morbidity and mortality: updating the cost-of-illness model. J. Am. Pharm. Assoc. 41:192–199, 2001.

    Google Scholar 

  27. Bureau of Labor Statistics, Consumer price index for medical care, 2002–2006.

  28. Rieder, M. J., Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 352 (22)2285–2293, 2005. doi:10.1056/NEJMoa044503.

    Article  Google Scholar 

  29. Genetic Information Nondiscrimination Act:GINA. http://www.house.gov/apps/list/speech/edlabor_dem/rel050108.html

  30. SNP Genotyping and Analysis Markets. Kalorama Information, 2008. http://www.infoshop-japan.com/publisher/KL.shtml

  31. Cabinet Office, Government of Japan, Act on the Protection of Personal Information, May, 2003, http://www5.cao.go.jp/seikatsu/kojin/houritsu/index.html

  32. Ministry of Health, Labour and Welfare, Ethical Guidelines for Human Genome and Genetic Sequencing Research, December, 2004, http://www5.cao.go.jp/seikatsu/shingikai/kojin/20050127kojin-sanko2-3.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Ohashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohashi, W., Tanaka, H. Benefits of Pharmacogenomics in Drug Development—Earlier Launch of Drugs and Less Adverse Events. J Med Syst 34, 701–707 (2010). https://doi.org/10.1007/s10916-009-9284-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9284-7

Keywords

Navigation