Skip to main content
Log in

Three-dimensional Texture Analysis of Renal Cell Carcinoma Cell Nuclei for Computerized Automatic Grading

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The extraction of important features in cancer cell image analysis is a key process in grading renal cell carcinoma. In this study, we analyzed the three-dimensional chromatin texture of cell nuclei based on digital image cytometry. Individual images of 2,423 cell nuclei were extracted from 80 renal cell carcinomas (RCCs) using confocal laser scanning microscopy (CLSM). First, we applied the 3D texture mapping method to render the volume of entire tissue sections. Then, we determined the chromatin texture quantitatively by calculating 3D gray level co-occurrence matrices and 3D run length matrices. Finally, to demonstrate the suitability of 3D texture features for classification, we performed a discriminant analysis. In addition, we conducted a principal component analysis to obtain optimized texture features. Automatic grading of cell nuclei using 3D texture features had an accuracy of 78.30%. Combining 3D textural and 3D morphological features improved the accuracy to 82.19%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim, D. S., and Lee, S. J., Diagnostic pathology of the breast. Academia. 139–172, 1990.

  2. Walker, R.F., Jackway, P.T., Statistical geometric features-extension for cytological texture analysis. IEEE Proc of ICP R'96. 790–794, 1996.

  3. François, C., Remmelink, M., Petein, M., van Velthoven, R., Danguy, A., Wespes, E., Salmon, I., Kiss, R., and Decaestecker, C., The chromatin pattern of cell nuclei is of prognostic value for in renal cell carcinoma. Anal. Cell. Pathol. 16:161–175, 1998.

    Google Scholar 

  4. Van de Wouwer, G., Weyn, B., Scheunders, P., Jacob, W., Van Marck, E., and Van Dyck, D., Wavelet as chromatin texture descriptors for the automated identification of neoplastic nuclei. J. Microsc. 187:25–35, 2000. doi:10.1046/j.1365-2818.2000.00594.x.

    Article  Google Scholar 

  5. Ji, Q., Engel, J., and Craine, E., Texture analysis for classification of cervix lesions. IEEE Trans. Med. Imaging. 19:1144–1149, 2000. doi:10.1109/42.896790.

    Article  Google Scholar 

  6. Rousslle, C., Paillasson, S., Robert-Nicoud, M., and Ronot, X., Chromatin texture analysis in living cells. Histochem. J. 31:63–70, 1999. doi:10.1023/A:1003579732506.

    Article  Google Scholar 

  7. Jafari-Khouzani, K., Soltanian-Zadeh, H., Elisevich, K., and Patel, S., Comparison of 2D and 3D wavelet features for TLE lateralization. Proc. of SPIE Medical Imaging 2004-Physiology, Function and Structure from Medical Images. 5369:593–601, 2004.

    Google Scholar 

  8. Madabhushi, A., Feldman, M., Metaxas, D., Chute, D., and Tomaszewski, J., A novel stochastic combination of 3D texture features for automated segmentation of prostatic adenocarcinoma from high resolution MRI. Med. Image Comput. Computer-assisted Intervention. 2878:581–591, 2003.

    Google Scholar 

  9. Kurani, A. S., Xu, D. H., Furst, J. D., Raicu, D. S., Co-occurrence matrices for volumetric data. 7th IASTED Int'l Conf on Computer Graphics and Imaging, Kauai, Hawaii, USA, in August 16–18. 2004.

  10. Xu, D. H., Kurani, A. S., Furst, J. D., Raicu, D. S., Run-length encoding for volumetric texture. 4th IASTED Int'l Conf on Visualization, Imaging and Image Processing, Marbella, Spain, September 6–8. 2004.

  11. Huisman, A., Ploeger, L. S., Dullens, H. F. J., Poulin, N., Grizzle, W. E., and Diest, P. J., Development of 3D chromatin texture analysis using confocal laser scanning microscopy. Cell. Oncol. 27:335–345, 2005.

    Google Scholar 

  12. Parker, J. R., Algorithms for Image Processing and Computer Vision. John Wiley & Sons, Inc, New York, 1997.

    Google Scholar 

  13. Gonzalez, R. C., and Woods, R. E., Digital Image Processing, 2nd edition. Prentice-Hall, Upper Saddle River, NJ, 2002.

    Google Scholar 

  14. Rodenacker, K., and Bengtsson, E., A feature set for cytometry on digitized microscopic images. Anal. Cell. Pathol. 24:1–36, 2003.

    Google Scholar 

  15. Young, I. T., Verbeek, P. T., and Mayall, B. H., Characterization of chromatin distribution in cell nuclei. Cytometry. 7:467–474, 1986. doi:10.1002/cyto.990070513.

    Article  Google Scholar 

  16. Irinopoulou, T., Vassy, J., Beil, M., Nicolopoulou, P., Encaoua, D., and Rigaut, J. P., Three-dimensional DNA image cytometry by confocal scanning laser microscopy in thick tissue blocks of prostatic lesions. Cytometry. 27:99–105, 1997. doi:10.1002/(SICI)1097-0320(19970201)27:2<99::AID-CYTO1>3.0.CO;2-F.

    Article  Google Scholar 

  17. Thiran, J. P., and Macq, B., Morphological feature extraction for the classification of digital images of cancerous tissues. IEEE Trans. Biomed. Eng. 43:1011–1020, 1996. doi:10.1109/10.536902.

    Article  Google Scholar 

  18. Rost, R. J., OpenGL Shading Language. Addison Wesley, Boston, 2004.

    Google Scholar 

  19. Johnson, R. A., and Wichern, D. W., Applied Multivariate Statistical Analysis. Prentice-Hall, Upper Saddle River, NJ, 2002.

    Google Scholar 

  20. Johnsonbaugh, R., and Jost, S., Pattern Recognition and Image Analysis. Prentice-Hall, Upper Saddle River, NJ, 1996.

    Google Scholar 

  21. Choi, H. J., Choi, I. H., Kim, T. Y., Cho, N. H., and Choi, H. K., Three-dimensional Visualization and Quantitative Analysis of Cervical Cell Nuclei with Confocal Laser Scanning Microscopy. Anal. Quant. Cytol. Histol. 27:174–180, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Choi.

Additional information

This work is supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2006-311-D00840).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T.Y., Choi, H.J., Hwang, H.G. et al. Three-dimensional Texture Analysis of Renal Cell Carcinoma Cell Nuclei for Computerized Automatic Grading. J Med Syst 34, 709–716 (2010). https://doi.org/10.1007/s10916-009-9285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9285-6

Keywords

Navigation