Skip to main content

Advertisement

Log in

Analysis of the Mobile Phone Effect on the Heart Rate Variability by Using the Largest Lyapunov Exponent

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this study, the effects of electromagnetic fields (EMFs) emitted by GSM900 based mobile phones (MPs) on the heart rate variability (HRV) were examined by using nonlinear analysis methods. The largest Lyapunov exponent (LLE) calculation was used to evaluate the effect of MP under various real exposure conditions. Sixteen healthy young volunteers were exposed to EMFs emitted by GSM900 based MP at two levels from a very low EMF (MP at stand-by) to a higher EMF (MP at pre-ring handshaking and ringing). A blind experimental protocol was designed and utilized with consideration to the physiological and psychological factors that may affect HRV. The results showed that the LLE values increased slightly with higher EMF produced by MP (P < 0.05). This change indicates that the degree of chaos in the HRV signals increased at higher EMF compared to low level EMF. Consequently, we have concluded that high level EMF changed the complexity of cardiac system behavior, significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. IRCP, International Commission on Non-Ionizing Radiation Protection: Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic fields. Health Phys. 74:494–522, 1998.

    Google Scholar 

  2. CENELEC (European Committee for Electrotechnical Standardization). Basic standard for the measurement of Specific Exposure Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz). (EN 50361: 2001E), 2001.

  3. IEGMP (lndependent Expert Group on Mobile Phones). Mobile Phones and Health 2004. National Radiological Protection Board. 15:1–114, 2004. http://www.nrpb.org.

  4. Malaric, K., Bartolic, J., Malaric, R., Measurement of GSM phone emission. Instrumentation and Mesurement Techonology Conference - IMTC 2004. Como, Italy. 18–20 May 2004.

  5. Ferreri, F., Curcio, G., Pasqualetti, P., Gennaro, L. D., Fini, R., and Rossini, P. M., Mobile phone emissions and human brain excitability. Ann. Neurol. 60:188–196, 2006.

    Article  Google Scholar 

  6. Braune, S., Wrocklage, C., Raczek, J., Gailus, T., and Lücking, C. H., Resting blood pressure increase during exposure to radiofrequency electromagnetic field. Lancet. 351:1857–1858, 1998.

    Article  Google Scholar 

  7. Haarala, C., Aalto, S., Hautzel, H., Julkunen, L., Rinne, J. O., Laine, M., et al., Effects of a 902 MHz mobile phone on cerebral blood flow in humans-a PET study. Neuroreport. 14:2019–2023, 2003.

    Article  Google Scholar 

  8. Huber, R., Treyer, V., Borbely, A. A., Schuderer, J., Gottselig, J. M., Landolt, H. P., et al., Electromagnetic fields such as those from mobile phones alter regional cerebral blood flow and sleep and waking EEG. J. Sleep Res. 11:289–295, 2002.

    Article  Google Scholar 

  9. Huber, R., Treyer, V., Schuderer, J., Berthold, T., Buck, A., Kuster, N., et al., Exposure to pulse-modulated radio frequency electromagnetic fields affects regional cerebralblood flow. Eur. J. Neurosci. 21:1000–1006, 2005.

    Article  Google Scholar 

  10. Croft, R. J., Chandler, J. S., Burgess, A. P., Barry, R. J., Williams, J. D., and Clark, A. R., Acute mobile phone affects neural function in humans. Clin. Neurophysiol. 113:1623–1632, 2002.

    Article  Google Scholar 

  11. Atlasz, T., Kellenyi, L., Kovacs, P., Babai, N., Thuroczy, G., Hejje, L., and Hernadi, I., The application of surface plethysmography for heart rate variability analysis after GSM radiofrequency exposure. J. Biochem. Biophys. Methods. 69:233–236, 2006.

    Article  Google Scholar 

  12. Parazzini, M., Ravazzni, P., Tognola, G., Thuroczy, G., Molnar, F. B., Sacchettini, A., Ardesi, G., and Tommaso, M., Electromagnetic fields produced by GSM cellular phones and heart rate variability. Bioelectromegnetics. 28:122–129, 2007.

    Article  Google Scholar 

  13. Task Force, Heart rate variability: Standards of measurements physiological interpretation and clinical use. Task Force of ESC/NASPE (European Society of Cardiology/North American Society of Pacing and Electrophysiology). Circulation. 93:1043–1065, 1996.

    Google Scholar 

  14. Kleiger, R. E., Stain, P. K., and Bigger, J. T., Heart rate variability: measurement and clinical utility. Ann. Nucl. Eng. 10:88–101, 2005.

    Google Scholar 

  15. Tahvanainen, K., Nino, J., Halonen, P., Kuusela, T., Laitinen, T., Lansimies, E., Hartikainen, J., Hietanen, M., and Lindholm, H., Cellular phone use does not acutely affect blood pressure or heart rate in humans. Bioelectromegnetics. 25:73–83, 2004.

    Article  Google Scholar 

  16. Wilen, J., Johansson, A., Kalezic, N., Lyskov, E., and Sandstro, M., Psychophysiological tests and provocation of subjects with mobile phone related symptoms. Bioelectromagnetics. 27:204–214, 2006.

    Article  Google Scholar 

  17. Andrzejak, R., Poreba, R., et al., The influence of the call with a mobile phone on heart rate variability parameters in healthy volunteers. Ind. Health. 46:409–417, 2008.

    Article  Google Scholar 

  18. Smietanowski, M., Nonlinear parameters estimation from sequential short time data series. Autonomic Neuroscience: Basic and Clinical. 90:158–166, 2001.

    Article  Google Scholar 

  19. Korhonen, I., Mainardi, L. T., Ypparila, H., and Musialowicz, T., Comparison of linear and non-linear analysis of heart rate variability in sedated cardiac surgery patients. Engineering in Medicine and Biology Society, Proceedings of the 23rd Annual International Conference of the IEEE. 1:496–499, 2001.

    Article  Google Scholar 

  20. Yeragani, V. K., Rao, K. A. R. K., Smitha, M. R., Pohl, R. B., Balon, R., and Srinivasan, K. R., Diminished chaos of heart rate time series in patients with major depression. Biol. Psychiatry. 51:733–744, 2002.

    Article  Google Scholar 

  21. Yeragani, V. K., Radhakrishna, R. K. A., Ramakrishnan, K. R., and Srinivasan, S. H., Measures of LLE of heart rate in different frequency bands: a possible measure of relative vagal and sympathetic activity. Nolinear Analysis: Real World Applications. 5:441–462, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  22. Acharya, R. U., Kumar, A., Bhat, P. S., Lim, C. M., Iyengar, S. S., Kannathal, N., and Krishnan, S. M., Classification of cardiac abnormalities using heart rate signals. Medical and Biological Engineering and Computing. 42:288–293, 2004.

    Article  Google Scholar 

  23. Acharya, R. U., Kannathal, N., Sing, O. W., Ping, L. Y., Chua, T., Heart rate analysis in normal subjects of various age groups. Biomedical Engineering Online 3(24), 2004.

  24. Carvajal, R., Wessel, N., Vallverdu, M., Caminal, P., and Voss, A., Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy. Comput. Methods Programs Biomed. 78:133–140, 2005.

    Article  Google Scholar 

  25. Ahamed, V. I. T., Karthick, N. G., and Joseph, P. K., Effect of mobile phone radiation on heart rate variability. Comput. Biol. Med. 38:709–712, 2008.

    Article  Google Scholar 

  26. Bernardi, L., Wdowczyk-Szulc, J., Valenti, C., Castoldi, S., Passino, C., Spadacini, G., and Sleight, P., Effects of controlled breathing, mental activity and mental stress with or without verbalization on heart rate variability. J Am Coll Cardiol. 35:1462-1469, 2000.

    Google Scholar 

  27. Lu, C. L., Zou, X., Orr, W. C., and Chen, J. D. Z., Postprandial changes of sympthovagal balance measured by heart rate variability. Dig. Dis. Sci. 44:857–861, 1999.

    Article  Google Scholar 

  28. Friesen, C. A., Lin, Z., Schurman, J. V., Andre, L., and Mccallum, R. W., Autonomic nervous system response to a solid meal and water loading in healthy children: its relation to gastric myoelectrical activity. Neurogastroenterol. Motil. 19:376–382, 2007.

    Article  Google Scholar 

  29. Menrad, A., et al., Dual microprocessor system for cardiovascular data acquisition, processing and recording. in Proc. 1981 IEEE Inr. Con5 Industrial Elect. Contr. Instrument., pp. 64–69, 1981.

  30. Freisen, G. M., Jannett, T. C., Jadallah, M. A., Yates, S. L., Quint, S. R., and Nagle, H. T., A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Bio. Med. Eng. 37:85–98, 1990.

    Article  Google Scholar 

  31. Kellert, S. H., In the wake of Chaos, unpredictable order in dynamical systems. The University of Chicago Pres, Chicago, 1993.

    MATH  Google Scholar 

  32. Abarbanel, H. D. I., Brown, R., Sidorowich, J. J., and Tsimring, L. S., The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65:1331–1392, 1993.

    Article  MathSciNet  Google Scholar 

  33. Haykin, S., and Li, X. B., Detection of signals in chaos. Proc. IEEE 83. 95:122, 1995.

    Google Scholar 

  34. Takens, F., Detecting strange attractors in turbulence. Lec. Not. Math. 898:366–381, 1981.

    Article  MathSciNet  Google Scholar 

  35. Fraser, A. M., and Swinney, H. L., Independent coordinates for strange attractors from mutual information. Phys. Rev. A. 33:1134–1140, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  36. Kennel, M. B., Brown, R., and Abarbanel, H. D. I., Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A. 45:3403–3411, 1992.

    Article  Google Scholar 

  37. Grassberger, P., and Procaccia, I., Measuring the strangenes of strange attractors. Physica D. 9:189–208, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  38. Cao, L., Practical method for determinig the minimum embedding dimension of a scalar time series. Physica D. 110:43–50, 1997.

    Article  MATH  Google Scholar 

  39. Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A., Determining Lyapunov exponents from a time series. Physica D. 16:285–317, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  40. Sano, M., and Sawada, Y., Measurement of the Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 55:1082–1085, 1985.

    Article  MathSciNet  Google Scholar 

  41. Briggs, K., An improved method for estimating Liapunov exponents of chaotic time series. Phys. Lett. A. 151:27–32, 1990.

    Article  MathSciNet  Google Scholar 

  42. Brown, R., Calculating Lyapunov exponents for short and/or noisy data set. Phys. Rev. E. 47:3962–3969, 1993.

    Article  Google Scholar 

  43. Rosenstein, M. T., Collins, J. J., and De Luca, C. J., A practical method for calculating largest Lyapunov exponents from small data sets. Physica D. 65:117, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  44. Parlitz, U., Nonlinear time series analysis nonlinear modelling. In: Suykens, J. A. K., and Vandewalle, J. (Eds.), Advanced Black-Box TechniquesKluwer, Academic Publishers, Boston, pp. 209–239, 1998.

    Google Scholar 

  45. Fell, J., and Beckmann, P. E., Resonance-like phenomena in Lyapunov calculations from data reconstructed by the time-delay method. Phys. Let. A. 90:172–176, 1994.

    Article  MathSciNet  Google Scholar 

  46. Merkwirth, C., Partliz, U., Lauterborn, W., TSTOOL-A software package for nonlinear time series analysis Proc. Int. Workshop on Advanced Black-Box Techniques for Nonlinear Modelling (Katholieke Universiteit. Leuven. Belgium. July 8–10):144–146, 1998.

  47. Salford, L. G., Brun, A. E., Eberhardt, J. L., Malmgren, L., and Persson, B. R. R., Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ. Health Perspect. 111 (7)881–883, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Yılmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yılmaz, D., Yıldız, M. Analysis of the Mobile Phone Effect on the Heart Rate Variability by Using the Largest Lyapunov Exponent. J Med Syst 34, 1097–1103 (2010). https://doi.org/10.1007/s10916-009-9328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9328-z

Keywords

Navigation