Skip to main content
Log in

Parallel Algorithm to Analyze the Brain Signals: Application on Epileptic Spikes

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In the current work, we have proposed a parallel algorithm for the recognition of Epileptic Spikes (ES) in EEG. The automated systems are used in biomedical field to help the doctors and pathologist by producing the result of an inspection in real time. Generally, the biomedical signal data to be processed are very large in size. A uniprocessor computer is having its own limitation regarding its speed. So the fastest available computer with latest configuration also may not produce results in real time for the immense computation. Parallel computing can be proved as a useful tool for processing the huge data with higher speed. In the proposed algorithm ‘Data Parallelism’ has been applied where multiple processors perform the same operation on different part of the data to produce fast result. All the processors are interconnected with each other by an interconnection network. The complexity of the algorithm was analyzed as Θ((n + δn) / N) where, ‘n’ is the length of the input data, ‘N’ is the number of processor used in the algorithm and ‘δn’ is the amount of overlapped data between two consecutive intermediate processors (IPs). This algorithm is scalable as the level of parallelism increase linearly with the increase in number of processors. The algorithm has been implemented in Message Passing Interface (MPI). It was tested with 60 min recorded EEG signal data files. The recognition rate of ES on an average was 95.68%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sinha, R. K., Electroencephalogram disturbances in different sleep–wake states following exposure to high environmental heat. Med. Biol. Eng. Comput. 42:282–287, 2004.

    Article  Google Scholar 

  2. Adeli, H., Zhou, Z., and Dadmehr, N., Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods. 123:69–87, 2003.

    Article  Google Scholar 

  3. Khan, Y. U., and Gotman, J., Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol. 114:898–908, 2003.

    Article  Google Scholar 

  4. Zarjam, P., Mesbah, M., and Boashash, B., Detection of newborns EEG seizure using optimal features based on discrete wavelet transform. Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing. 2:265–268, 2003.

    Google Scholar 

  5. Subasi, A., Epileptic seizure detection using dynamic wavelet network. Expert Syst. Appl. 29:343–355, 2005.

    Article  Google Scholar 

  6. Subasi, A., EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32:1084–1093, 2007.

    Article  Google Scholar 

  7. Indiradevi, K. P., Elias, E., Sathidevi, P. S., Nayak, S. D., and Radhakrishnan, K., A multi-level wavelet approach for automatic detection of epileptic spikes in the electroencephalogram. Comput. Biol. Med. 38:805–816, 2008.

    Article  Google Scholar 

  8. Ocak, H., Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36:2027–2036, 2009.

    Article  Google Scholar 

  9. Kiymik, M. K., Akin, M., and Subasi, A., Automatic recognition of alertness level by using wavelets transform and artificial neural network. J. Neurosci. Methods. 139:231–240, 2004.

    Article  Google Scholar 

  10. Sinha, R. K., Ray, A. K., and Agrawal, N. K., An artificial neural network to detect EEG seizures. Neurol. India. 52:399–400, 2004.

    Google Scholar 

  11. Subasi, A., Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst. Appl. 31:320–328, 2006.

    Article  Google Scholar 

  12. Inan, Z. H., and Kuntalp, M., A study on fuzzy C-means clustering-based systems in automatic spike detection. Comput. Biol. Med. 37:1160–1166, 2007.

    Article  Google Scholar 

  13. Xu, G., Wang, J., Zhang, Q., Zhang, S., and Zhu, J., A spike detection method in EEG based on improved morphological filter. Comput. Biol. Med. 37:1647–1652, 2007.

    Article  Google Scholar 

  14. Keshri, A. K., Sinha, R. K., Hatwal, R., and Das, B. N., Epileptic spike recognition in electroencephalogram using deterministic finite automata. J. Med. Syst. 33:173–179, 2009.

    Article  Google Scholar 

  15. Michailidis, P. D., and Margaritis, K. G., A programmable array processor architecture for flexible approximation string matching algorithm. J. Parallel Distrib. Comput. 67:131–141, 2007.

    Article  MATH  Google Scholar 

  16. Abderazek, B. A., Canedo, A., Yoshinaga, T., and Sowa, M., The QC-2 parallel queue processor architecture. J. Parallel Distrib. Comput. 68:235–245, 2008.

    Article  Google Scholar 

  17. Akramullah, S. M., Ahmad, I., and Liou, M. L., A data parallel approach for real-time Mpeg-2 video encoding. J. Parallel Distrib. Comput. 30:129–146, 1995.

    Article  Google Scholar 

  18. Ferreira, A., and Robson, J. M., Fast and scalable parallel algorithms for Knapsack-like problems. J. Parallel Distrib. Comput. 39:1–13, 1996.

    Article  MATH  Google Scholar 

  19. Low, D. H. P., Veeravalli, B., and Vader, D. A., On the design of high-performance algorithms for aligning multiple protein sequences on mesh-based multiprocessor architecture. J. Parallel Distrib. Comput. 67:1007–1017, 2007.

    Article  MATH  Google Scholar 

  20. Butler, R., and Lusk, E., Monitors, messages, and clusters: the p4 parallel programming system. J. Parallel Comput. 20 (4)547–564, 1994.

    Article  MATH  Google Scholar 

  21. Bala, V., Kipnis, S., Rudolph, L., and Snir, M., Designing efficient, scalable, and portable communication libraries. SIAM 1993 Conference on Parallel Processing for Scientific Computing 862–872, 1993.

  22. Sinha, R. K., Artificial neural network detects changes in electroencephalogram power spectrum of different sleep–wake states in an animal model of heat stress. Med. Biol. Eng. Comput. 41:595–600, 2003.

    Article  Google Scholar 

  23. Hwang, K., and Briggs, F. A., Computer architecture and parallel processing. McGraw-Hill, New York, 1985.

    Google Scholar 

  24. Akl, S. G., The design and analysis of parallel algorithm. Prentice-Hall, Englewood Cliffs, 1989.

    Google Scholar 

  25. Sasikumar, M., Shikhare, D., and Prakash, P. R., Introduction to parallel processing. Prentice-Hall, New Delhi, 2000.

    Google Scholar 

  26. Quinn, M. J., Parallel computing (2nd ed): theory and practice. McGraw-Hill, New York, 2002.

    Google Scholar 

  27. Gotman, J., and Gloor, P., Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroenceph. Clin. Neurophysiol. 41:513–529, 1976.

    Article  Google Scholar 

  28. Gotman, J., Ives, J. R., and Gloor, P., Automatic recognition of interictal spikes. In Long-term monitoring in epilepsy. EEG Supplement. 37:93–114, 1985.

    Google Scholar 

  29. Glover, J. R., Ktonas, P. Y., Raghvan, N., Urunela, J. M., Velamuri, S. S., and Reilly, E. L., A multichannel signal processor for the detection of epileptogenic sharp transient in the EEG. IEEE Trans. BME. 12:1121–1128, 1986.

    Article  Google Scholar 

  30. Ktonas, P. Y., and Smith, J. R., Quantification of abnormal EEG characteristics. Comput. Biol. Med. 4:157–163, 1974.

    Article  Google Scholar 

  31. Adeli, H., Dastidar, S. G., and Dadmehr, N. A., Wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. BME. 54:205–211, 2007.

    Article  Google Scholar 

  32. Agarwal, R., and Gotman, J., Computer-assisted sleep staging. IEEE Trans. BME. 48:1412–1423, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Sinha.

Appendix

Appendix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keshri, A.K., Das, B.N., Mallick, D.K. et al. Parallel Algorithm to Analyze the Brain Signals: Application on Epileptic Spikes. J Med Syst 35, 93–104 (2011). https://doi.org/10.1007/s10916-009-9345-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9345-y

Keywords

Navigation