Skip to main content
Log in

A Biomedical Decision Support System Using LS-SVM Classifier with an Efficient and New Parameter Regularization Procedure for Diagnosis of Heart Valve Diseases

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Classification success of Support Vector Machine (SVM) depends on the characteristic of given data set and some training parameters (C and σ). In literature, a few studies have been presented for regularization of these parameters which affects classification performance directly. This study proposes a new approach based on Renyi’s entropy and Logistic regression methods for parameter regularization. Our regularization procedure runs at two steps. In the first step, optimal value of kernel parameter interval is found via Renyi’s entropy method and optimal C value is found via logistic regression using exponential function in the next step. In addition to, this new decision support system is applied to biomedical research area via an application related to Doppler Heart Sounds (DHS). Experimental results show the efficiency of developed regularization procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akay, M., Akay, Y. M., and Welkowitz, W. Neural networks for the diagnosis of coronary artery disease. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN. Vol. 2, pp. 419–424, 1992.

  2. Nanda, N. C., Doppler echocardiography, 2nd edition. Lea & Febiger, London, 1993.

    Google Scholar 

  3. Keeton, P. I. J., and Schlindwein, F. S., Application of wavelets in Doppler Ultrasound. Sens. Rev. 17(Issue 1):38–45, 1997. doi:10.1108/02602289710163355.

    Article  Google Scholar 

  4. Wright, I. A., Gough, N. A. J., Rakebrandt, F., Wahab, M., and Woodcock, J. P., Neural network analysis of Doppler ultrasound blood flow signals: A pilot study. Ultrasound Med. Biol. 23(5):683–690, 1997.

    Article  Google Scholar 

  5. Jing, F., Xuemin, W., Mingshi, W., and Wie, L. Noninvasive acoustical analysis system of coronary heart disease. In: Proceedings of the Sixteenth Southern Biomedical Engineering Conference, pp. 239–241, 1997.

  6. Turkoglu, I., Arslan, A., and Ilkay, E., An expert system for diagnosis of the heart valve diseases. Expert Syst. Appl. 23(3):229–236, 2002.

    Article  Google Scholar 

  7. Uğuz, H., Arslan, A., and Türkoğlu, İ., A biomedical system based on hidden Markov model for diagnosis of the heart valve diseases. Pattern Recognit. Lett. 28(4):395–404, 2007.

    Article  Google Scholar 

  8. Çomak, E., Arslan, A., and Türkoğlu, İ., A decision support system based on support vector machines for diagnosis of the heart valve diseases. Comput. Biol. Med. 37(1):21–27, 2007.

    Article  Google Scholar 

  9. Chan, B. C. B., Chan, F. H. Y., Lam, F. K., Lui, P. W., and Poon, P. W. F., Fast detection of venous air embolism is Doppler heart soundusing the wavelet transform. IEEE Trans. Biomed. Eng. 44(Issue \4):237–245, 1997.

    Article  Google Scholar 

  10. Guler, I., Kiymik, M. K., Kara, S., and Yuksel, M. E., Application of autoregressive analysis to 20 MHz pulsed Doppler data in real time. Biomedical Computing 31(3–4):247–256, 1992.

    Article  Google Scholar 

  11. Gold, C., Holub, A., and Sollich, P., Bayesian approach to feature selection and parameter tuning for support vector machine classifiers. Neural Netw. 18:693–701, 2005.

    Article  MATH  Google Scholar 

  12. UCI Repository of Machine Learning Databases. ftp://ftp.ics.uci.edu/pub/machine-learning-databases.

  13. Huang, C. L., and Wang, C. J., A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31:231–240, 2006.

    Article  Google Scholar 

  14. Min, S. H., Lee, J., and Han, I., Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert Syst. Appl. 31:652–660, 2006.

    Article  Google Scholar 

  15. Kulkarni, A., Jayaraman, V. K., and Kulkarni, B. D., Support vector classification with parameter tuning assisted by agent-based technique. Comput. Chem. Eng. 28:311–318, 2004.

    Article  Google Scholar 

  16. Eitrich, T., and Lang, B., Efficient optimization of support vector machine learning parameters for unbalanced datasets. J. Comput. Appl. Math. 196:425–436, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  17. Coussement, K., and Van den Poel, D., Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert Syst. Appl. 34:313–327, 2008.

    Article  Google Scholar 

  18. Lin, S. W., Ying, K. C., Chen, S. C., and Lee, Z. J., Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35(4):1817–1824, 2008.

    Article  Google Scholar 

  19. Saini, V. D., Nanda, N. C., and Maulik, D., Basic principles of ultrasound and Doppler effect, Doppler echocardiography. Lea & Febiger, Philadelphia, 1993.

    Google Scholar 

  20. Madeira, M. M., Tokhi, M. O., and Ruano, M. G., Real-time implementation of a Doppler signal spectral estimator using sequential and parallel processing techniques. Microprocess. Microsyst. 24(3):153–167, 2000.

    Article  Google Scholar 

  21. Karabetsos, E., Papaodysseus, C., and Koutsouris, D., Design and development of a new ultrasonic doppler technique for estimation of the aggregation of red blood cells. Journal of the International Measurement Confederation, Elsevier 24(Issue 4):207–215, 1998. doi:10.1016/S0263-2241(98)00053-0.

    Google Scholar 

  22. Akay, M., Wavelet applications in medicine. IEEE Spectrum 34:50–56, 1997.

    Article  Google Scholar 

  23. Liang, H., and Nartimo, I. A feature extraction algorithm based on wavelet packet decomposition for heart sound signals. Proceedings of the IEEE-SP International Symposium, pp. 93–96, 1998.

  24. Quiroga, R. Q. Quantitative analysis of EEG signals: Time-frequency methods and Chaos theory, Ph.D. Thesis; Lübeck: Intitute of Physiology, Medical University, 1998.

  25. Devasahayam, S. R., Signals and systems in biomedical engineering. Kluwer, Dordoecht, 2000.

    Book  Google Scholar 

  26. Burrus, C. S., Gopinath, R. A., and Guo, H., Introduction to wavelet and wavelet transforms. Prentice Hall, USA, 1998.

    Google Scholar 

  27. Coifman, R. R., and Wickerhauser, M. V., Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 38(2):713–718, 1992.

    Article  MATH  Google Scholar 

  28. Quiroga, R. Q., Roso, O. A., and Basar, E., Wavelet entropy: A measure of order in evoked potentials, Evoked potentials and magnetic fields, vol. 49. Elsevier, Amsterdam, pp. 298–302, 1999.

    Google Scholar 

  29. Daisuke, T., and Shigeo, A., Fuzzy least squares support vector machines for multiclass problems. Neural Netw. Fields, Elsevier 16:785–792, 2003.

    Google Scholar 

  30. Gunn, S. R. Support vector machines for classification and regression, ISIS, Technical Report, University of Southampton, Department of Electrical and Computer Science, 1998.

  31. Burbidge, R., and Buxton, B. An introduction to support vector machines for data mining, Young OR 12, University of Nottingham, pp. 3–15, 2001.

  32. Kim, H. C., Pang, S., Je, H. M., Kim, D., and Bang, S. Y., Constructing support vector machine ensemble. Pattern Recogn., Elsevier 36:2757–2767, 2003.

    Article  MATH  Google Scholar 

  33. Goh, K. S., Chang, E., and Cheng, K. T. SVM binary classifier ensembles for image classification, CIKM’01. Atlanta, Georgia, USA, pp. 395–402, 2001.

  34. Gokcay, E., and Principe, I., Information theoretic clustering. IEEE Trans. Pattern Anal. Mach. Intell. 24(Issue 2):158–170, 2002.

    Article  Google Scholar 

  35. Jenssen, R., Hild, K. E., II, Erdogmus, D., Principe, J. C., and Eltoft, T., Clustering using Renyi’s entropy. Proc. Int. Jt. Conf. Neural Netw. 1:523–528, 2003.

    Article  Google Scholar 

  36. McQueen, J. Some methods for classification and analysis of multivariate observations. In: Fifth Berkley Symposium on Mathematical Statistics and Probability, pp. 281–297, 1967.

  37. Eltoft, T., and Defigueiredo, R. J. P., A new neural network for cluster-detection-and-labeling. IEEE Trans. Neural Netw. 9(5):1021–1035, 1998.

    Article  Google Scholar 

  38. Ben-Hur, A., Hom, D., Siegelmann, H. T., and Vapnik, V., Support vector clustering. J. Mach. Learn. Res. 2:125–137, 2001.

    Google Scholar 

  39. Bakhtazad, A., Palazoglu, A., and Romagnoli, J. A., Process data de-noising using wavelet transform. Intell. Data Anal. 3:267–285, 1999.

    Article  MATH  Google Scholar 

  40. Osareh, A., Mirmehdi, M., Thomas, B., and Markham, R. Comparative exudate classification using support vector machines and neural networks. In: Dohi, T., and Kikinis, R. (Eds.), 5th International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer LNCS 2489, pp. 413–420, 2002.

  41. Centor, R. M., Signal detectability: The use of ROC curves and their analysis. Med. Decis. Mak. 11:102–106, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Çomak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çomak, E., Arslan, A. A Biomedical Decision Support System Using LS-SVM Classifier with an Efficient and New Parameter Regularization Procedure for Diagnosis of Heart Valve Diseases. J Med Syst 36, 549–556 (2012). https://doi.org/10.1007/s10916-010-9500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9500-5

Keywords

Navigation