Skip to main content
Log in

Discovering Blood Donor Arrival Patterns Using Data Mining: A Method to Investigate Service Quality at Blood Centers

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Blood centers without fixed appointments for collecting blood often experience nonconstant donor arrival rates, which vary due to time-of-day, day-of-week, etc. When a constant workforce size is employed in such blood centers, there is either idle personnel, or donor satisfaction is compromised due to long waiting times, or both conditions alternate over time. Consequently, a method to obtain adaptive workforce requirements might be valuable. This study utilized the Two-Step Cluster method and the Classification and Regression Trees method in succession to identify both daily and hourly donor arrival patterns at Hacettepe University Hospitals’ Blood Center. A serial queuing network model of the donation process was then employed for each of the identified donor arrival patterns. By considering and accomodating variations in the donor arrival patterns, required workforce sizes and their decomposition among process steps were predicted to achieve predetermined target values of expected waiting times and to balance workforce utilizations in the blood donation processes. Although a blood center is considered for the proposed methodology, the approach is general and applications in various operations of healthcare organizations are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lynam, P. F., Smith, T., and Dwyer, J., Client flow analysis: a practical management technique for outpatient clinic settings. Int J Qual Health Care 6:179–186, 1994.

    Google Scholar 

  2. Whittaker, M., Towards strategic quality management of health care. J Health Manag 1:215–248, 1999.

    Article  Google Scholar 

  3. Hancock, W. M., Pollock, S. M., and Kim, M. K., A Model to Determine Staff Levels, Cost, Productivity of Hospital. J Med Syst 11:319–330, 1987.

    Article  Google Scholar 

  4. Jeang, A., and Falkenberg, D. R., A Stochastic Model for Determining the Necessary Staff Level in a Service Industry. J Med Syst 15:249–255, 1991.

    Article  Google Scholar 

  5. Jeang, A., Flexible Nursing Staff Planning when Patient Demands are Uncertain. J Med Syst 18:125–138, 1994.

    Article  Google Scholar 

  6. Jeang, A., Flexible Nursing Staff Planning with Adjustable Patient Demands. J Med Syst 20:173–182, 1996.

    Article  Google Scholar 

  7. Bretthauer, K. M., and Côté, M. J., A model for planning resource requirements in health care. Decis Sci 29:243–270, 1998.

    Article  Google Scholar 

  8. Pratt, M. L., and Grindon, A. J., Computer simulation analysis of blood donor queueing problems. Transfusion. 22:234–237, 1982.

    Article  Google Scholar 

  9. Brennan, J. E., Golden, B. L., and Rappoport, H. K., Go with the flow: improving red cross bloodmobiles using simulation analysis. Interfaces. 22:1–13, 1992.

    Article  Google Scholar 

  10. Katsaliaki, K., and Brailsford, S. C., Using simulation to improve the blood supply chain. J Oper Res Soc 58:219–227, 2007.

    MATH  Google Scholar 

  11. Côté, M. J., Patient f low and resource utilization in an outpatient clinic. Socio-Econ Plann Sci 33:231–245, 1999.

    Article  Google Scholar 

  12. Bosnes, V., Aldrin, M., and Heier, H. E., Predicting blood donor arrival. Transfusion 45:162–170, 2005.

    Article  Google Scholar 

  13. The SPSS TwoStep Cluster Component. [technical report on the internet]. SPSS; 2001 [cited 2009 August 15]. Available from : http://www.spss.ch/upload/1122644952_The%20SPSS%20TwoStep%20Cluster%20Component.pdf.

  14. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J., Classification and Regression Trees. Chapman & Hall, New York, 1984.

    MATH  Google Scholar 

  15. Burke, P. J., The output of a queuing system. Oper Res 4:699–704, 1956.

    Article  MathSciNet  Google Scholar 

  16. Gall, P. L., The overall sojourn time in tandem queues with identical successive service times and renewal input. Stoch Process Their Appl 52:165–178, 1994.

    Article  MATH  Google Scholar 

  17. Whitt, W., Approximations for the GI/G/m queue. Prod Oper Manag 2:114–161, 1993.

    Article  Google Scholar 

  18. Bitran, G. B., and Tirupati, D., Capacity planning in manufacturing networks with discrete options. Ann Oper Res 17:119–136, 1989.

    Article  MATH  Google Scholar 

  19. Bitran, G. B., and Tirupati, D., Multiproduct queueing networks with deterministic routing: decomposition approach and the notion of interference. Management Science. 34:75–100, 1988.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to; Hacettepe University Hospitals’ Computer Center for providing the data files, Volkan Sonmez for organizing the dataset used in this research, and the anonymous referees for their comments which greatly improved the paper.

Funding

This work was supported by Hacettepe University Research Center Fund [BAP 08 01 602 006].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Caner Testik.

Appendices

Appendix 1

In this appendix, the expressions developed by Whitt [17] to find the average waiting time in a GI/G/m queuing system are presented.

λ:

Arrival rate

μ:

Service rate

m:

Number of servers

ρ:

Utilization (λ/mμ)

c 2a :

Squared coefficient of variation of inter-arrival time

c 2s :

Squared coefficient of variation of service time

W(λ,ρ,c 2a ,c 2s ,m):

Average waiting time in a GI/G/m queuing system with given arguments

W*(ρ,m):

Average waiting time in an M/M/m queuing system with given arguments

P0(ρ,m):

Probability of zero waiting time in an M/M/m queuing system with given arguments

Case 1: m=1

$$ W\left( {\lambda {,}\rho {,}c_a^2,c_s^2,m} \right) = \frac{{{\rho^2}\left( {c_a^2 + c_s^2} \right)}}{{2\lambda \left( {1 - \rho } \right)}}\Gamma \left( {\rho, c_a^2,c_s^2} \right) $$

where \( \begin{array}{*{20}{c}} {\Gamma \left( {\rho, c_a^2,c_s^2} \right) = } \hfill & {\left\{ {\begin{array}{*{20}{c}} {\exp \left( {\frac{{ - 2\left( {1 - \rho } \right){{\left( {1 - c_a^2} \right)}^2}}}{{3\rho \left( {c_a^2 + c_s^2} \right)}}} \right)\,{\hbox{if}}\,c_a^2 \leqslant 1} \hfill \\{\exp \left( {\frac{{\left( {1 - \rho } \right)\left( {c_a^2 - 1} \right)}}{{\left( {1 + \rho } \right)\left( {c_a^2 + 10c_s^2} \right)}}} \right)\,i{\hbox{f}}\,c_a^2 > 1} \hfill \\\end{array} } \right.} \hfill \\\end{array} \)

Case 2: m>1

$$ W\left( {\lambda {,}\rho {,}c_a^2,c_s^2,m} \right) = \frac{{{W^*}\left( {\rho, m} \right)\left( {c_a^2 + c_s^2} \right)}}{2}\varphi \left( {\rho, c_a^2,c_s^2,m} \right) $$

where \( {W^*}\left( {\rho, m} \right) = \frac{{{{\left( {m\rho } \right)}^{m + 1}}{P_0}\left( {\rho, m} \right)}}{{\lambda m\left( {m!} \right){{\left( {1 - \rho } \right)}^2}}} \) with \( {P_0}\left( {\rho, m} \right) = {\left( {\left( {\sum\limits_{k = 0}^{m - 1} {\frac{{{{\left( {m\rho } \right)}^k}}}{{k!}}} } \right) + {{\left( {m\rho } \right)}^m}\frac{1}{{m!\left( {1 - \rho } \right)}}} \right)^{ - 1}} \)

$$ \varphi \left( {\rho, c_a^2,c_s^2,m} \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{{4\left( {c_a^2 + c_s^2} \right)}}{{4c_a^2 - 3c_s^2}}{\varphi^1}\left( {m,\rho } \right) + \frac{{c_s^2}}{{4c_a^2 - 3c_s^2}}\Theta \left( {\frac{{c_a^2 + c_s^2}}{2},m,\rho } \right)} & {} & {{\hbox{if }}c_a^2 > c_s^2} \\{} & {} & {} \\{\frac{{\left( {c_s^2 - c_a^2} \right)}}{{2\left( {c_a^2 + c_s^2} \right)}}{\varphi^3}\left( {m,\rho } \right) + \frac{{c_s^2 + 3c_a^2}}{{2\left( {c_a^2 + c_s^2} \right)}}\Theta \left( {\frac{{c_a^2 + c_s^2}}{2},m,\rho } \right)} & {} & {{\hbox{if }}c_a^2 \leqslant c_s^2} \\\end{array} } \right. $$
$$ \Theta \left( {\alpha, m,\rho } \right) = \left\{ {\begin{array}{*{20}{c}} 1 & {} & {{\hbox{if }}\alpha > {1}} \\{} & {} & {} \\{{\varphi^4}{{\left( {m,\rho } \right)}^{2\left( {1 - \alpha } \right)}}} & {} & {{\hbox{if 0}} \leqslant \alpha \leqslant {1}} \\\end{array} } \right. $$
$$ \delta \left( {m,\rho } \right) = { \min }\left\{ {0.24,\frac{{\left( {1 - \rho } \right)\left( {m - 1} \right)\left( {{{\left( {4 + 5m} \right)}^{0.5}} - 2} \right)}}{{16m\rho }}} \right\} $$
$$ {\varphi^1}\left( {m,\rho } \right) = 1 + \delta \left( {m,\rho } \right),{\varphi^2}\left( {m,\rho } \right) = 1 - 4\delta \left( {m,\rho } \right) $$
$$ {\varphi^3}\left( {m,\rho } \right) = {\varphi^2}\left( {m,\rho } \right)\exp \left( {{{ - 2\left( {1 - \rho } \right)} \mathord{\left/{\vphantom {{ - 2\left( {1 - \rho } \right)} {3\rho }}} \right.} {3\rho }}} \right),\,{\varphi^4}\left( {m,\rho } \right) = \min \left\{ {1,\frac{{{\varphi^1}\left( {m,\rho } \right) + {\varphi^3}\left( {m,\rho } \right)}}{2}} \right\} $$

Appendix 2

This appendix presents the expressions that are used to compute the parameters of the arrival and departure processes of each stage j in a serial queuing network with k stages. These expressions are special cases of the ones presented in Bitran and Tirupati [18, 19].

λj :

Arrival rate of stage j

μj :

Service rate of stage j

mj :

Number of servers for stage j

pj :

Non-departure probability after stage j

ρj :

Utilization of stage jjmjμj)

c 2a,j :

Squared coefficient of variation of inter-arrival time for stage j

c 2s,j :

Squared coefficient of variation of service time for stage j

c 2d,j :

Squared coefficient of variation of inter-departure time for stage j

$$ {\lambda_{j + 1}} = {p_j}{\lambda_j}{\hbox{ and }}c_{a,j + 1}^2 = c_{d,j}^2{\hbox{ for }}j > 1 $$
$$ c_{d,j}^2 = 1 + \left( {1 - \rho_j^2} \right)\left( {c_{a,j}^2 - 1} \right) + \frac{{\rho_j^2\left( {c_{s,j}^2 - 1} \right)}}{{\sqrt {{{m_j}}} }} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Testik, M.C., Ozkaya, B.Y., Aksu, S. et al. Discovering Blood Donor Arrival Patterns Using Data Mining: A Method to Investigate Service Quality at Blood Centers. J Med Syst 36, 579–594 (2012). https://doi.org/10.1007/s10916-010-9519-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9519-7

Keywords

Navigation