Skip to main content

Advertisement

Log in

A Review of Tags Anti-collision and Localization Protocols in RFID Networks

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Radio Frequency IDentification (RFID) has allowed the realization of ubiquitous tracking and monitoring of physical objects wirelessly with minimum human interactions. It plays a key role in a wide range of applications including asset tracking, contactless payment, access control, transportation and logistics, and other industrial applications. On the other side, RFID systems face several technical challenges that need to be overcome in order to achieve their potential benefits; tags collisions and localization of tagged objects are two important challenges. Numerous anti-collision and localization protocols have been proposed to address these challenges. This paper reviews the state-of-art tags’ anti-collision and localization protocols, and provides a deep insight into technical issues of these protocols. The probabilistic and deterministic anti-collision protocols are critically studied and compared in terms of different parameters. We further review distance estimation, scene analysis, and proximity localization schemes and provide useful suggestions. We also introduce a new hybrid direction that utilizes power control to spatially partition the interrogation range of a reader for more efficient anti-collision and localization. Finally, we present the applications of RFID systems in healthcare sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RFID:

Radio frequency identification

DoD:

Department of defense

RF-ITV:

Radio frequency in-transit visibility

LF:

Low frequency

HF:

High frequency

UHF:

Ultra high frequency

SDMA:

Space division multiple access

FDMA:

Frequency division multiple access

TDMA:

Time division multiple access

CDMA:

Code division multiple access (CDMA)

PA:

Pure-Aloha

SA:

Slotted Aloha

FSA:

Framed-slotted Aloha

ACK:

Acknowledgement

NACK:

Negative acknowledgement

STAC:

Slotted terminal adaptive collection

EPC:

Electronic product code

BFSA:

Basic FSA

DFSA:

Dynamic FSA

EDFSA:

Enhanced DFSA

GB-DFSA:

Grouping-based DFSA

QT:

Query tree

BT:

Binary tree

TS:

Tree splitting

BTA:

Bitwise-arbitration

CTTA:

Collision tracking tree algorithm

MSB:

Most significant bit

LSB:

Least significant bit

RN:

Random numbers

DFS:

Depth first search

PDC:

Power-based distance clustering

RPs:

Reference points

RSS:

Received signal strength

VIRE:

Virtual reference elimination

SAW:

Surface acoustic wave

TOA:

Time of arrival

TDOA:

Time difference of arrival

WHO:

World health organization

References

  1. Want, R., Enabling ubiquitous sensing with RFID. IEEE Comput. Soc. 37:84–86, 2008.

    Article  Google Scholar 

  2. Wal-Mart Radio Tags to Track Clothing, Website: http://online.wsj.com/article/, Accessed Date: 4 March 2012.

  3. RFID Technology: Keeping Track of DoD’s Stuff, Website: http://www.defenseindustrydaily.com/, Accessed Date: 2 March 2012.

  4. Bolic, M., Ryle, D. S., and Stojmenovic, I., RFID systems: research trends and challenges. Wiley, 2010.

  5. Ward, M., RFID: Frequency, standards, adoption and innovation. JISC Technology and Standards Watch, 2006.

  6. Klair, D. K., Chin, K. W., and Raad, R., A survey and tutorial of RFID anti-collision protocols. IEEE Commun. Surv. Tutor. 12(3):400–421, 2010.

    Article  Google Scholar 

  7. Schwartz, M., Telecommunication networks protocols, modeling and analysis. Addison-Wesley, New York, 1988.

    Google Scholar 

  8. Microelectronics, “Supertag category protocols.” Datasheet.http://www.gaw.ru/doc/EM-Marin/P4022.PDF, Accessed Date: 9 March 2012.

  9. Klair, D. K., Chin, K. W., and Raad, R., An investigation into the energy efficiency of pure and slotted Aloha based RFID anti-collision protocols. In: The IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, Helsinki (Finland), 2007.

  10. Baldi, M., and Gambi, E., MAC protocols for RFID systems, radio frequency identification fundamentals and applications bringing research to practice. In: Turcu, C. (Ed.), ISBN: 978-953-7619-73-2, 2010.

  11. Klair, D. K., Chin, K. W., and Raad, R., On the suitability of framed slotted Aloha based RFID anti-collision protocols for use in RFID-enhanced WSNs. In: The Proceedings of 16th International Conference on Computer Communications and Networks, pp. 583–590, 2007.

  12. Shin, W., and Kim, J., Partitioning of tags for near-optimum RFID anticollision performance. Wireless Communications and Networking Conference, pp. 1673–1678, 2007.

  13. Kim, J., A divide-and-conquer technique for throughput enhancement of RFID anti-collision protocol. IEEE Commun. Lett. 12(6):474–476, 2008.

    Article  Google Scholar 

  14. Eom, J., Lee, T., Rietman, R., and Yener, A., An efficient framed slotted ALOHA algorithm with pilot frame and binary selection for anticollision of RFID tags. IEEE Commun. Lett. 12(11):861–863, 2008.

    Article  Google Scholar 

  15. Khandelwal, G., Yener, A., Lee, K., and Serbetli, S. ASAP: a MAC protocol for dense and time constrained RFID systems. In: The IEEE International Conference on Communications, 2006.

  16. Lee, S. R., Joo, S. D., and Lee, C. W.: An enhanced dynamic framed slotted ALOHA algorithm for RFID tag identification. In: Proceedings of the 2nd Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, pp. 166–174, 2005.

  17. Liu, H. C., and Guo, X. C., A passive UHF RFID system with huffman sequence spreading backscatter signals. The Internet of Things, LNCS 4952, pp.184–195, 2008.

  18. Bolic, M., Ryle, D. S., and Stojmenovic, I., RFID systems: research trends and challenges. Wiley, p. 182, 2010.

  19. Zhu, L., and Yum, T. S. P., A critical survey and analysis of RFID anti-collision mechanisms. IEEE Commun. Mag. 49(5):214–221, 2011.

    Article  Google Scholar 

  20. Chen, W. T., An accurate tag estimate method for improving the performance of an RFID anticollision algorithm based on dynamic frame length ALOHA. IEEE Trans. Autom. Sci. Eng. 6(1):9–15, 2009.

    Article  Google Scholar 

  21. Vahedi, E., Wong, V. W. S., Blake, I. F., and Ward, R. K., Probabilistic analysis and correction of Chen’s tag estimate method. IEEE Trans. Autom. Sci. Eng. 8(3):659–663, 2011.

    Article  Google Scholar 

  22. Vogt, H., Multiple object identification with passive RFID tags. In: The IEEE International Conference on Man and Cybernetics (Tunisia), pp. 6–13, 2002.

  23. Cha, J. R., and Kim, J. H., Novel anti-collision algorithms for fast object identification in RFID system. In: The 11th International Conference on Parallel and Distributed Systems, (Korea), pp. 63–67, 2005.

  24. Haifeng, W., and Zeng, Y., Efficient framed slotted Aloha protocol for RFID tag anticollision. IEEE Trans. Autom. Sci. Eng. 8(3):581–588, 2011.

    Article  Google Scholar 

  25. Wu, H., and Zeng, Y., Bayesian tag estimate and optimal frame length for anti-collision aloha RFID system. IEEE Trans. Autom. Sci. Eng. 7(4):963–969, 2010.

    Article  Google Scholar 

  26. Wang, C. Y., and Lee, C. C.: A grouping-based dynamic framed slotted ALOHA anti-collision method with fine groups in RFID systems. In: 5th International Conference onFuture Information Technology, pp. 1–5, 2010.

  27. Bolic, M., Ryle, D. S., and Stojmenovic, I., RFID systems: research trends and challenges. Wiley, p. 207, 2010.

  28. Choi, J. H., Lee, D., Jeon, H., Cha, J., and Lee, H., Enhanced binary search with time-divided responses for efficient RFID tag anti-collision. In: The IEEE International Conference on Communications, pp. 3853–3858, 2007.

  29. Hush, D. R., and Wood, C., Analysis of tree algorithms for RFID arbitration. In: Proc. of IEEE International Symposium on Information Theory, p. 107, 1998.

  30. Law, C., Lee, K., and Siu, K. Y., Efficient memoryless protocol for tag identification. In: Proc. of 4th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, pp. 75–84, 2000.

  31. Bo, F., Tao, L. J., Bo, G. J., and Hua, D. Z., ID-binary tree stack anticollision algorithm for RFID. In: Proc. 11th IEEE Symposium on Computers and Communications, (Sardinia, Italy), pp. 207–212, 2006.

  32. Jacomet, M., Ehrsam, A., and Gehrig, U., Contact-less identification device with anti-collision algorithm. In: Conference on Circuits Systems, Computers and Communications, (Athens, Greece), 1999.

  33. Liu, L., Xie, Z., Xi, J., and Lai, S., An improved anti-collision algorithm in RFID system. In: The Proceedings of 2nd International Conference on Mobile Technology, Applications and System, pp. 1–5, 2005.

  34. Bang, O., Choi, J. H., Lee, D., and Lee, H., Efficient novel anti-collision protocols for passive RFID tags, Auto-ID Labs White Paper, 2009.

  35. Namboodiri, V., and Gao, L., Energy-aware tag anti-collision protocols for RFID systems. In: The 5th IEEE International Conference on Pervasive Computing and Communications, pp. 23–36, 2007.

  36. Choi, J. H., Lee, D., and Lee, H., Bi-slotted tree based anti-collision protocols for fast tag identification in RFID systems. IEEE Commun. Lett. 10(12):861–863, 2006.

    Article  Google Scholar 

  37. Kim, S. H., Shin, M. K., and Park, P., A new tree-based tag anticollision protocol for RFID systems. In: The Proceedings of International conference on Communications in Computing, pp. 83–86, 2006.

  38. Zhou, F., Chen, C., Jin, D., Huang, C., and Min, H., Evaluating and optimizing power consumption of anti-collision protocols for applications in RFID systems. In: The Proceedings of International Symposium on Low power Electronics and Design, pp. 357–362, 2004.

  39. Bo, F., Tao, L. J., Bo, G. J., and Hua D. Z., ID-binary tree stack anticollision algorithm for RFID. In: The Proceedings of 11th IEEE Symposium on Computers and Communications, pp. 207–212, 2006.

  40. Ali, K., Hassanein, H., and Taha, A. M., RFID anti-collision protocol for dense passive tag environments. In: The Proceedings of the 32nd IEEE Conference on Local Computer Networks, pp. 819–824, 2007.

  41. Alsalih, W., Ali, K., and Hassanein, H., Optimal distance-based clustering for tag anti-collision in RFID. In: The Proceedings of the 33rd IEEE Conference on Local Computer Networks, pp. 266–273, 2008.

  42. The Applicability of RFID for Indoor Localization | InTechOpen’. [Online]. Available: http://www.intechopen.com/books/deploying-rfid-challenges-solutions-and-open-issues/the-applicability-of-rfid-for-indoor-localization. Accessed Date: 19-Mar-2012.

  43. Liu, H., Darabi, H., Banerjee, P., and Liu, J., Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 37(6):1067–1080, 2007.

    Article  Google Scholar 

  44. Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., and Dea, R. J., Relative location estimation in wireless sensor networks. IEEE Trans. Signal Process. 51(8):2137–2148, 2003.

    Article  Google Scholar 

  45. Wang, X., Wang, Z., and Dea, R. J., A TOA-based location algorithm reducing the errors due to non-line-of-sight (NLOS) propagation. IEEE Trans. Veh. Technol. 52(1):112–116, 2003.

    Article  Google Scholar 

  46. Chan, Y. T., and Ho, K. C., A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 42(8):1905–1915, 1994.

    Article  MathSciNet  Google Scholar 

  47. Bahl, P., and Padmanabhan, V. N., RADAR: an in-building RF-based user location and tracking system. In: The Proceedings of Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Vol. 2, pp. 775–784, 2000.

  48. Chai, X., and Yang, Q., Reducing the calibration effort for probabilistic indoor location estimation. IEEE Trans. Mob. Comput. 6(6):649–662, 2007.

    Article  Google Scholar 

  49. Bouet, M., and Pujolle, G., A range-free 3-D localization method for RFID tags based on virtual landmarks. In: The Proceedings of IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1–5, 2008.

  50. Ni, L. M., Liu, Y., Lau, Y. C., and Patil, A. P., LANDMARC: indoor location sensing using active RFID. In: Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, pp. 407–415, 2003.

  51. Zhao, Y., Liu, Y., and Ni, L. M., VIRE: active RFID-based localization using virtual reference elimination. In: International Conference on Parallel Processing, 2007. ICPP 2007, pp. 56–56, 2007.

  52. Wang, C., Hongyi, W., and Tzeng, N. F., RFID-based 3-D positioning schemes. In: The Proceedings of 26th IEEE International Conference on Computer Communications, pp. 1235–1243, 2007.

  53. Silva, R. A., and da S. Goncalves, P. A., Enhancing the efficiency of active RFID-based indoor location systems. In: IEEE Wireless Communications and Networking Conference, pp. 1–6, 2009.

  54. Hightower, J., Want, R., and Borriello, G., SpotON: an indoor 3D location sensing technology based on RF signal strength, 2000, UW CSE 00-02-02.

  55. Bekkali, A., Sanson, H., and Matsumoto, M., RFID indoor positioning based on probabilistic RFID map and Kalman filtering, pp. 21–21, 2007.

  56. Bechteler, T. F., and Yenigun, H., 2-D localization and identification based on SAW ID-tags at 2.5 GHz. IEEE Trans. Microw. Theory Tech. 51(5):1584–1590, 2003.

    Article  Google Scholar 

  57. Soonjun, S., Promwong, S., and Cherntanomwong, P., Improvement of RFID based location fingerprint technique for indoor environment. In: The Proceedings of the 9th international conference on Communications and information technologies, pp. 916–921, 2009.

  58. Pappu, M., Singhal, R., and Zoghi, B., RFID in hospitals, issues and solutions, 2004.

  59. RFID: Coming to a Hospital near You. Sun Microsystems Press, 2004.

  60. Website, World Health Organization, www.who.int Date visited: 4 March 2012.

  61. Hendrickson, D., Study: RFID in hospitals shows ROI promise. Mass High Tech: The Journal of New England Technology, December 2004.

  62. Frost and Sullivan Research Service, World RFID in Healthcare and Pharmaceutical Markets, September 2005.

Download references

Acknowledgments

This research is supported by the National Plan for Science and Technology at King Saud University, Project No: 11-INF1500.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ullah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullah, S., Alsalih, W., Alsehaim, A. et al. A Review of Tags Anti-collision and Localization Protocols in RFID Networks. J Med Syst 36, 4037–4050 (2012). https://doi.org/10.1007/s10916-012-9876-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-012-9876-5

Keywords

Navigation