Skip to main content

Advertisement

Log in

An Implementation of Wireless Body Area Networks for Improving Priority Data Transmission Delay

  • Mobile Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The rapid growth of wireless sensor networks has enabled the human health monitoring of patients using body sensor nodes that gather and evaluate human body parameters and movements. This study describes both simulation model and implementation of a new traffic sensitive wireless body area network by using non-preemptive priority queue discipline. A wireless body area network implementation employing TDMA is designed with three different priorities of data traffics. Besides, a coordinator node having the non-preemptive priority queue is performed in this study. We have also developed, modeled and simulated example network scenarios by using the Riverbed Modeler simulation software with the purpose of verifying the implementation results. The simulation results obtained under various network load conditions are consistent with the implementation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cavallari, R., Martelli, F., Rosini, R., Buratti, C., and Verdone, R., A survey on wireless body area networks: technologies and design challenges. IEEE Commun. Surv. Tutor. 16(3):1635–1657, 2014. Third Quarter.

    Article  Google Scholar 

  2. Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., Saleem, S., Rahman, Z., and Sup Kwak, K., A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions. J. Med. Syst. 36(3):1065–1094, 2012.

    Article  PubMed  Google Scholar 

  3. Khan, J. Y., Yuce, M. R., Bulger, G., and Harding, B., Wireless Body Area Network (WBAN) design techniques and performance evaluation. J. Med. Syst. 36(3):1065–1441, 2012. 1457.

    Article  Google Scholar 

  4. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., and Jamalipour, A., Wireless body area networks: a survey. IEEE Commun. Surv. Tutor. 16(3):1658–1686, 2014. Third Quarter.

    Article  Google Scholar 

  5. Çalhan, A., and Atmaca, S., A new network coordinator node design selecting the optimum wireless technology for wireless body area networks. KSII Trans. Int. Inf. Syst. 7(5):1077–1093, 2013.

    Google Scholar 

  6. Bayilmis, C., and Younis, M., Energy-aware gateway selection for increasing the lifetime of wireless body area sensor networks. J. Med. Syst. 36:1593–1601, 2012. doi:10.1007/s10916-010-9620-y. ISSN:0148–5598.

    Article  PubMed  Google Scholar 

  7. Yuce, M. R., Ng, P. C., and Khan, J. Y., Monitoring of physiological parameters from multiple patients using wireless sensor network. J. Med. Syst. 32(5):433–441, 2008.

    Article  PubMed  Google Scholar 

  8. Patel, M., and Wang, J., Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel. Commun. 17(1):80–88, 2010.

    Article  Google Scholar 

  9. Rezvani, S., Ghorashi, S. A., Context aware and channel-based resource allocation for wireless body area networks. IET Wirel. Sens. Syst. 3(1), 2013.

  10. Anjum, I., Alam, N., Razzaque, M. A., Hassan, M. M., and Alamri, A., Traffic priority and Aoad adaptive MAC protocol for QoS provisioning in body sensor networks. Int. J. Distrib. Sensor Netw. 2013. doi:10.1155/2013/205192 (Online publication).

    Google Scholar 

  11. Wang, A., ve Aiu, K., An energy-efficient and Aow-Aatency MAC protocol for wireless sensor networks. Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2007 International Symposium on, 90–93, 2007.

  12. Xu, G., Song, Q., Qiu, A., Tian, C., ve Yang, A., A priority scheduling algorithm for improving emergent data transmission rate in the body area networks. Sensor Netw. Secur. Technol. Priv. Commun. Syst. Int. Conf, 48–52, 2013.

  13. Shuai, J., Zou, W., Zhou, Z., Priority-based adaptive timeslot allocation scheme for wireless body area network. Commun. Inf. Technol. 13th Int. Symp, 609–614, 2013,

  14. Rezvani, S., and Ghorashi, S. A., Context aware and channel-based resource allocation for wireless body area networks. IET Wirel. Sensor Syst. 3(1):16–25, 2013.

    Article  Google Scholar 

  15. Yuce, M. R., Implementation of wireless body area networks for healthcare systems. Sensors Actuators A Phys. 162(1):116–129, 2010.

    Article  CAS  Google Scholar 

  16. Sharma, S., Vyas, A. L., Thakker, B., Mulvaney, D., and Datta, S., Wireless body area network for health monitoring. Biomed. Eng. Inf. 4th Int. Conf. 4:2183–2186, 2011.

    Google Scholar 

  17. Kirbas, I., Karahan, A., Sevin, A., Bayilmis, C., isMOTE: mobile sensor and actuator node design for wireless body area networks. Sig. Proc. Commun. Appl. Conf. (SIU), 21st. 1–4, 2013.

  18. Patil, P., and Mohsin, S., Article: fuzzy logic based health care system using wireless body area network. Int. J. Comput. Appl. 80(12):46–51, 2013.

    Google Scholar 

  19. Riverbed Modeler Software, 2015. http://www.riverbed.com/products/steelcentral/opnet.html.

  20. Ahmad, A., Riedl, A., Naramore, W. J., Nee-Yin, C., and Alley, M. S., Scenario-based traffic modeling for data emanating from medical instruments in clinical environment. Comput. Sci. Inf. Eng. WRI World Congr. 1:529–533, 2009.

    Google Scholar 

  21. e-Health Sensor Platform Complete Kit. [Online]. Available: http://www.cooking-hacks.com

Download references

Acknowledgments

This work was supported by Scientific Research Projects in Duzce University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Çalhan.

Additional information

This article is part of the Topical Collection on Mobile Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gündoğdu, K., Çalhan, A. An Implementation of Wireless Body Area Networks for Improving Priority Data Transmission Delay. J Med Syst 40, 75 (2016). https://doi.org/10.1007/s10916-016-0443-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0443-3

Keywords

Navigation