Skip to main content
Log in

A Novel Nonlinear Mathematical Model of Thoracic Wall Mechanics During Cardiopulmonary Resuscitation Based on a Porcine Model of Cardiac Arrest

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Cardiopulmonary resuscitation (CPR) is used widely to rescue cardiac arrest patients, yet some physiological aspects of the procedure remain poorly understood. We conducted this study to characterize the dynamic mechanical properties of the thorax during CPR in a swine model. This is an important step toward determining optimal CPR chest compression mechanics with the goals of improving the fidelity of CPR simulation manikins and ideally chest compression delivery in real-life resuscitations. This paper presents a novel nonlinear model of the thorax that captures the complex behavior of the chest during CPR. The proposed model consists of nonlinear elasticity and damping properties along with frequency dependent hysteresis. An optimization technique was used to estimate the model coefficients for force-compression using data collected from experiments conducted on swine. To track clinically relevant, time-dependent changes of the chest’s properties, the data was divided into two time periods, from 1 to 10 min (early) and greater than 10 min (late) after starting CPR. The results showed excellent agreement between the actual and the estimated forces, and energy dissipation due to viscous damping in the late stages of CPR was higher when compared to the earlier stages. These findings provide insight into improving chest compression mechanics during CPR, and may provide the basis for developing CPR simulation manikins that more accurately represent the complex real world changes that occur in the chest during CPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sutton, R. M., French, B., Nishisaki, A., Niles, D. E., Maltese, M. R., Boyle, L., Stavland, M., Eilevstjønn, J., Arbogast, K. B., Berg, R. A., and Nadkarni, V. M., American Heart Association cardiopulmonary resuscitation quality targets are associated with improved arterial blood pressure during pediatric cardiac arrest. Resuscitation 84(2):168–72, 2013.

    Article  PubMed  Google Scholar 

  2. Morrison, L. J., Neumar, R. W., Zimmerman, J. L., Link, M. S., Newby, L. K., McMullan, P. W., Hoek, T. V., Halverson, C. C., Doering, L., Peberdy, M. A., and Edelson, D. P., Strategies for improving survival after in-hospital cardiac arrest in the United States:2013 consensus recommendations: a consensus statement from the American Heart Association. Circulation 127:1538–1563, 2013.

    Article  PubMed  Google Scholar 

  3. Sutton, R. M., Friess, S. H., Bhalala, U., Maltese, M. R., Naim, M. Y., Bratinov, G., Niles, D., Nadkarni, V. M., Becker, L. B., and Berg, R. A., Hemodynamic directed CPR improves short-term survival from asphyxia-associated cardiac arrest. Resuscitation 84:696–701, 2013.

    Article  PubMed  Google Scholar 

  4. Tomlinson, A. E., Nysaether, J., Kramer-Johansen, J., Steen, P. A., and Dorph, E., Compression force-depth relationship during out-of-hospital cardiopulmonary resuscitation. Resuscitation 72:364–370, 2007.

    Article  CAS  PubMed  Google Scholar 

  5. Andreka, P., and Frenneaux, M. P., Haemodynamics of cardiac arrest and resuscitation. Curr. Opin. Crit. Care 12:198–203, 2006.

    Article  PubMed  Google Scholar 

  6. Gruben, K. G., Halperin, H. R., Popel, A. S., and Tsitlik, J. E., Canine sternal force-displacement relationship during car-diopulmonary resuscitation. IEEE Trans. Biomed. Eng. 46:788–796, 1999.

    Article  CAS  PubMed  Google Scholar 

  7. Niemann, J. T., Rosborough, J. P., Kassabian, L., and Salami, B., A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation. Resuscitation 69:295–301, 2006.

    Article  PubMed  Google Scholar 

  8. Halperin, H. R., Paradis, N., Ornato, J. P., Zviman, M., LaCorte, J., Lardo, A., and Kern, K. B., Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest. J. Am. Coll. Cardiol. 44:2214–20, 2004.

    Article  PubMed  Google Scholar 

  9. Kent, R., Salzar, R., Kerrigan, J., Parent, D., Lessley, D., Sochor, M., Luck, J. F., Loyd, A., Song, Y., Nightingale, R., Bass, C. R., and Maltese, M. R., Pediatric thoracoabdominal biomechanics. Stapp Car Crash J. 53:373–401, 2009.

    PubMed  Google Scholar 

  10. Kent, R., Lopez-Valdes, F. J., Lamp, J., Lau, S., Parent, D., Kerrigan, J., Lessley, D., Salzar, R., Sochor, M., Bass, D., and Maltese, M. R., Biomechanical response targets for physical and computational models of the pediatric trunk. Traffic Inj. Prev. 13:499–506, 2012.

    Article  PubMed  Google Scholar 

  11. Geddes, L. A., Boland, M. K., Taleyarkhan, P. R., and Vitter, J., Chest compression force of trained and untrained CPR rescuers. Cardiovasc. Eng. 7:47–50, 2007.

    Article  PubMed  Google Scholar 

  12. Abella, B. S., High-quality cardiopulmonary resuscitation: current and future directions. Curr. Opin. Crit. Care 22(3):218–24, 2016.

    Article  PubMed  Google Scholar 

  13. Baubin, M., Haid, C., Hamm, P., and Gilly, H., Measuring forces and frequency during active compression decompression cardiopulmonary resuscitation: a device for training, research and real CPR. Resuscitation 43:17–24, 1999.

    Article  CAS  PubMed  Google Scholar 

  14. Nysaether, J. B., Dorph, E., Rafoss, I., and Steen, P. A., Manikins with human-like chest properties-a new tool for chest compression research. IEEE Trans. Biomed. Eng. 55:2643–2650, 2008.

    Article  PubMed  Google Scholar 

  15. Maltese, M. R., Castner, T., Niles, D., Nishisaki, A., Balasubramanian, S., Nysaether, J., Sutton, R., Nadkarni, V., and Arbogast, K. B., Methods for determining pediatric thoracic force-deection characteristics from cardiopulmonary resuscitation. Stapp Car Crash J. 52:83–105, 2008.

    PubMed  Google Scholar 

  16. Maltese, M. R., Arbogast, K. B., Nadkarni, V., Berg, R., Balasubramanian, S., Seacrist, T., Kent, R. W., Parent, D. P., Craig, M., and Ridella, S. A., Incorporation of CPR data into ATD chest impact response requirements. Ann. Adv. Automot. Med. 54:79–88, 2010.

    PubMed  PubMed Central  Google Scholar 

  17. Bankman, I. N., Gruben, K. G., Halperin, H. R., Popel, A. S., Guerci, A. D., and Tsitlik, J. E., Identification of dynamic mechanical parameters of the human chest during manual cardiopulmonary resuscitation. IEEE Trans. Biomed. Eng. 37(2):211–217, 1990.

    Article  CAS  PubMed  Google Scholar 

  18. Neurauter, A., Nysaether, J., Kramer-Johansen, J., Eilevstjnn, J., Paal, P., Myklebust, H., Wenzel, V., Lindner, K. H., Schmlz, W., Pytte, M., Steen, P. A., and Strohmenger, H. U., Comparison of mechanical characteristics of the human and porcine chest during cardiopulmonary resuscitation. Resuscitation 80:463–469, 2009.

    Article  PubMed  Google Scholar 

  19. Nataraj, C., Vibration of Mechanical Systems. Cengage Learning, 2012.

  20. Ihnát Rudinská, L., Hejna, P., Ihnát, P., Tomášková, H., Smatanová, M., and Dvořáček, I., Intra-thoracic injuries associated with cardiopulmonary resuscitation - Frequent and serious. Resuscitation 103:66–70, 2016.

    Article  PubMed  Google Scholar 

  21. Strogatz, S. H., Nonlinear Dynamics And Chaos:With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity) Westview Press, 2001.

  22. Samadani, M., Kitio Kwuimy, C., Nataraj, C., Model-based fault diagnostics of nonlinear systems using the features of the phase space response. Commun. Nonlinear Sci. Numer. Simul., 2014.

  23. Friess, S. H., Sutton, R. M., Bhalala, U., Maltese, M. R., Naim, M. Y., Bratinov, G., Weiland, T. R., 3rd, Garuccio, M., Nadkarni, V. M., Becker, L. B., and Berg, R. A., Hemodynamic directed cardiopulmonary resuscitation improves short-term survival from ventricular fibrillation cardiac arrest. Crit. Care Med. 41:2698–2704, 2013.

    Article  CAS  PubMed  Google Scholar 

  24. Friess, S. H., Sutton, R. M., French, B., Bhalala, U., Maltese, M. R., Naim, M. Y., Bratinov, G., Arciniegas Rodriguez, S., Weiland, T. R., Garuccio, M., Nadkarni, V. M., Becker, L. B., and Berg, R. A., Hemodynamic directed CPR improves cerebral perfusion pressure and brain tissue oxygenation. Resuscitation 88:1298–1303, 2014.

    Article  Google Scholar 

  25. Aase, S. O., Eftestl, T., Husy, J. H., Sunde, K., and Steen, P. A., CPR artifact removal from human ECG using optimal multichannel filtering. IEEE Trans. Biomed. Eng. 47:1440–1449, 2000.

    Article  CAS  PubMed  Google Scholar 

  26. Aase, S. O., and Myklebust, H., Compression depth estimation for CPR quality assessment using DSP on accelerometer signals. IEEE Trans. Biomed. Eng. 49:263–268, 2002.

    Article  PubMed  Google Scholar 

  27. Sutton, R. M., Maltese, M. R., Niles, D., French, B., Nishisaki, A., Arbogast, K. B., Donoghue, A., Berg, R. A., Helfaer, M. A., and Nadkarni, V., Quantitative analysis of chest compression interruptions during in-hospital resuscitation of older children and adolescents. Resuscitation 80:1259–1263, 2009.

    Article  PubMed  Google Scholar 

  28. Badaki-Makun, O., Nadel, F., Donoghue, A., McBride, M., Niles, D., Seacrist, T., Maltese, M., Zhang, X., Paridon, S., and Nadkarni, V. M., Chest compression quality over time in pediatric resuscitations. Pediatrics 131:e797–e804, 2013.

    Article  PubMed  Google Scholar 

  29. Jalali, A., Berg, R. A., Nadkarni, V., and Nataraj, C., Model based optimization of the cardiopulmonary resuscitation (CPR) procedure. Conf. Proc. IEEE. Eng. Med. Biol. 2012:715–718, 2012.

    Google Scholar 

  30. Zheng, Z. J., Croft, J. B., Giles, W. H., and Mensah, G. A., Sudden cardiac death in the United States, 1989 to 1998. Circulation 104:2158–2163, 2001.

    Article  CAS  PubMed  Google Scholar 

  31. Sutton, R. M., Niles, D., Nysaether, J., Abella, B. S., Arbogast, K. B., Nishisaki, A., Maltese, M. R., Donoghue, A., Bishnoi, R., Helfaer, M. A., Myklebust, H., and Nadkarni, V., Quantitative analysis of CPR quality during in-hospital resuscitation of older children and adolescents. Pediatrics 124:494–499, 2009.

    Article  PubMed  Google Scholar 

  32. Jalali, A., Berg, R., Nadkarni, V., Nataraj, C., Improving cardiopulmonary resuscitation, CPR by dynamic variation of CPR parameters. In: ASME Dynamic Systems and Control Conference, (DSCC), 2013.

Download references

Acknowledgments

The research reported in this paper was supported by a grant from the National Institutes of Health (No. 1 R01 NS 72338 01A1). The authors express their gratitude to Dr. Robert Sutton, Dr. Matthew Maltese, Mrs. Dana Niles, and Dr. George Bratinov at CHOP for their significant contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Jalali.

Ethics declarations

Conflict of Interest

Ali Jalali, PhD declares that he has no conflict of interest. Allan F. Simpao, MD, MBI declares that he has no conflict of interest. Vinay M. Nadkarni, MD declares that he has no conflict of interest. Robert A. Berg, MD declares that he has no conflict of interest. C. Nataraj, PhD declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, A., Simpao, A.F., Nadkarni, V.M. et al. A Novel Nonlinear Mathematical Model of Thoracic Wall Mechanics During Cardiopulmonary Resuscitation Based on a Porcine Model of Cardiac Arrest. J Med Syst 41, 20 (2017). https://doi.org/10.1007/s10916-016-0676-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0676-1

Keywords

Navigation