Skip to main content
Log in

An Intelligent Body Posture Analysis Model Using Multi-Sensors for Long-Term Physical Rehabilitation

  • Mobile & Wireless Health
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Sensors can be installed on various body parts to provide information for computer diagnosis to identify the current body state. However, as human posture is subject to gravity, the direction of the force on each limb differs. For example, the directions of gravitational force on legs and trunk differ. In addition, each person’s height and structure of limbs differs, hence, the acceleration and rotation resulted from such differences on force and length of the limbs of a person in motion would be different, and be presented by cases of different postures. Thus, how to present body postures through skeleton system equations, and achieve an long-term physical rehabilitation, according to the different limb characteristics of each person, is a challenging research issue. This paper proposes a novel scheme named as “Intelligent Body Posture Analysis Model”, which uses multiple acceleration sensors and gyroscopes to detect body motion patterns. The effectiveness of the proposed scheme is proved by conducting a large number of practical experiments and tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Zhang, Y., Grorec: A group-centric intelligent recommender system integrating social, mobile and big data technologies. IEEE Trans. Serv. Comput. 9(5):786–795, 2016.

    Article  Google Scholar 

  2. Saxena, A., Sun, M., Ng, A. Y., Make3D: learning 3D scene structure from a single still image. IEEE Trans. Pattern Anal. Mach. Intell. 31(5):824–840, 2009.

    Article  PubMed  Google Scholar 

  3. Zhang, Y., et al., iDoctor: personalized and professionalized medical recommendations based on hybrid matrix factorization. Futur. Gener. Comput. Syst. 66:30–35, 2017.

    Article  Google Scholar 

  4. Chen, M., Ma, Y., Song, J., Lai, C., Hu, B., Smart clothing: connecting human with clouds and big data for sustainable health monitoring. ACM/Springer Mob. Netw. Appl. 21(5):825–845, 2016.

    Article  Google Scholar 

  5. Vlasic, D., Adelsberger, R., Vannucci, G., Barnwell, J., Gross, M., Matusik, W., Popovic, J., Practical motion capture in everyday surroundings. ACM Trans. Graph. (TOG) 26(3):35 , 2007.

    Article  Google Scholar 

  6. Zhang, Y., et al.: Health-CPS: Healthcare Cyber-Physical System Assisted by Cloud and Big Data. IEEE Syst. J. doi:10.1109/JSYST.2015.2460747 (2015)

  7. Ballan, L., and Cortelazzo, G. M.: Marker-Less motion capture of skinned models in a four camera set-up using optical flow and silhouettes. In: Proceedings of the Fourth International Symposium on 3D Data Processing, Visualization and Transmission, June 18–20, Atlanta, GA, USA (2008)

  8. Wan, C. K., Yuan, B. Z., Miao, Z. J., Markerless human body motion capture using markov random field and dynamic graph cuts. The Vis. Comput. 24(5):373–380, 2008.

    Article  Google Scholar 

  9. McNamara, J. E., Bruyant, P., Johnson, K., An assessment of a Low-Cost visual tracking system (VTS) to detect and compensate for patient motion during SPECT. IEEE Trans. Nucl. Sci. 55(3):992–998, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li, B., Meng, Q., Holsteinc, H., Articulated motion reconstruction from feature points. Pattern Recogn. 41(1):418–431, 2008.

    Article  Google Scholar 

  11. Ashutosh, S., Sung, H. C., Andrew, Y. N., 3-d depth reconstruction from a single still image. Int. J. Comput. Vis. 76(1):53–69, 2008.

    Google Scholar 

  12. Noah, S., Steven, M. S., Richard, S., Modeling the world from internet photo collections. Int. J. Comput. Vis. 80(2):189–210, 2008.

    Article  Google Scholar 

  13. Zhang, Y., Chen, M., Mao, S., Hu, L., Leung, V., CAP: crowd activity prediction based on big data analysis. IEEE Netw. 28(4):52–57, 2014.

    Article  Google Scholar 

  14. Zou, B., Chen, S., Shi, C., Providence, U. M., Automatic reconstruction of 3D human motion pose from uncalibrated monocular video sequences based on markerless human motion tracking. Pattern Recogn. 42(7): 1559–1571, 2008.

    Article  Google Scholar 

  15. Jia, H., and Martinez, A. M., Low-rank matrix fitting based on subspace perturbation analysis with applications to structure from motion. IEEE Trans. Pattern Anal. Mach. Intell. 31(5):841–854, 2009.

    Article  PubMed  Google Scholar 

  16. Oliensis, J., and Hartley, R., Iterative extensions of the sturm/triggs algorithm: convergence and nonconvergence. IEEE Trans. Pattern Anal. Mach. Intell. 29(12):2217–2233, 2007.

    Article  PubMed  Google Scholar 

  17. Chen, H. T., Tien, M. C., Chen, Y. W., Tsai, W. J., Lee, S. Y., Physics-based ball tracking and 3D trajectory reconstruction with applications to shooting location estimation in basketball video. J. Vis. Commun. Image Represent. 20(3):204–216, 2008.

    Article  Google Scholar 

  18. Chen, M., Hao, Y., Lai, C., Wu, D., Li, Y., Hwang, K.: Opportunistic workflow scheduling over co-located clouds in mobile environment. IEEE Trans. Serv. Comput. doi:10.1109/TSC.2016.2589247(2016)

  19. Zhuxin, D., Wejinya, U. C., Shengli, Z., Qing, S., Li, W. J.: Real-time written-character recognition using MEMS motion sensors: calibration and experimental results. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, Feb. 22–25, Bangkok Thailand (2009)

  20. Tseng, Y. C., Wu, C. H., Wu, F. J.: A wireless human motion capturing system for home rehabilitation. In: Proceedings of the Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, May 18–20, Taipei, Taiwan (2009)

  21. Liang, X., Li, Q., Zhang, X., Zhang, S., Geng, W., Performance-driven motion choreographing with accelerometers. Comput. Animat. Virtual Worlds 20(2-3):89–99, 2009.

    Article  Google Scholar 

  22. Amasay, T., Zodrow, K., Kincl, L., Hess, J., Karduna, A., Validation of tri-axial accelerometer for the calculation of elevation angles. Int. J. Ind. Ergon. 39(5):783–789, 2009.

    Article  Google Scholar 

  23. Huang, Q., Bian, G. B., Duan, X. G., Zhao, H. H., Liang, P., An ultrasound-directed robotic system for microwave ablation of liver cancer. Robotica 28(2):209–214, 2008.

    Article  Google Scholar 

  24. Isola, A., Ziegler, A., Schafer, D., Kohler, T., Niessen, W., Grass, M., Motion compensated iterative reconstruction of a region of interest in cardiac cone-beam CT. Comput. Med. Imaging Graph. 34(2):149–159, 2010.

    Article  CAS  PubMed  Google Scholar 

  25. Catapano, I., Crocco, L., D’Urso, M., Isernia, T., 3D microwave imaging via preliminary support reconstruction: testing on the fresnel 2008 database. Inverse Probl. 25(4):024002–024025, 2009.

    Article  Google Scholar 

  26. Garcia, J., Besada, J. A., Soto, A., Miguel, G. D., Opportunity trajectory reconstruction techniques for evaluation of ATC systems. Int. J. Microw. Wirel. Technol. 1:231–238, 2009.

    Article  Google Scholar 

  27. Daniel, F. T., Gabriel, T., Stephen, P., Wavefront reconstruction of elevation circular synthetic aperture radar imagery using a cylindrical green’s function. EURASIP Journal on Advances in Signal Processing (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Feng Lai.

Additional information

This article is part of the Topical Collection on Mobile & Wireless Health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, CF., Hwang, RH. & Lai, YH. An Intelligent Body Posture Analysis Model Using Multi-Sensors for Long-Term Physical Rehabilitation. J Med Syst 41, 71 (2017). https://doi.org/10.1007/s10916-017-0708-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0708-5

Keywords

Navigation