Skip to main content
Log in

Airflow in Tracheobronchial Tree of Subjects with Tracheal Bronchus Simulated Using CT Image Based Models and CFD Method

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Tracheal Bronchus (TB) is a rare congenital anomaly characterized by the presence of an abnormal bronchus originating from the trachea or main bronchi and directed toward the upper lobe. The airflow pattern in tracheobronchial trees of TB subjects is critical, but has not been systemically studied. This study proposes to simulate the airflow using CT image based models and the computational fluid dynamics (CFD) method. Six TB subjects and three health controls (HC) are included. After the geometric model of tracheobronchial tree is extracted from CT images, the spatial distribution of velocity, wall pressure, wall shear stress (WSS) is obtained through CFD simulation, and the lobar distribution of air, flow pattern and global pressure drop are investigated. Compared with HC subjects, the main bronchus angle of TB subjects and the variation of volume are large, while the cross-sectional growth rate is small. High airflow velocity, wall pressure, and WSS are observed locally at the tracheal bronchus, but the global patterns of these measures are still similar to those of HC. The ratio of airflow into the tracheal bronchus accounts for 6.6–15.6% of the inhaled airflow, decreasing the ratio to the right upper lobe from 15.7–21.4% (HC) to 4.9–13.6%. The air into tracheal bronchus originates from the right dorsal near-wall region of the trachea. Tracheal bronchus does not change the global pressure drop which is dependent on multiple variables. Though the tracheobronchial trees of TB subjects present individualized features, several commonalities on the structural and airflow characteristics can be revealed. The observed local alternations might provide new insight into the reason of recurrent local infections, cough and acute respiratory distress related to TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BC:

Boundary conditions

COPD:

Chronic obstructive pulmonary disease

CFD:

Computational fluid dynamics

CT:

Computed Tomography

LLL:

Left lower lobe

LUL:

Left upper lobe

LA:

Lobar distribution

PFT:

Pulmonary function tests

RLL:

Right lower lobe

RML:

Right middle lobe

RUL:

Right upper lobe

STL:

Stereo lithography

TB:

Tracheal bronchus

References

  1. Berrocal, T., Madrid, C., Novo, S., et al., Congenital anomalies of the tracheobronchial tree, lung, and mediastinum: Embryology, radiology, and pathology. Radiographics A Review Publication of the Radiological Society of North America Inc. 24(1):e17, 2004.

    Article  Google Scholar 

  2. Chassagnon, G., Morel, B., and Carpentier, E., Tracheobronchial branching abnormalities: Lobe-based classification scheme. Radiographics A Review Publication of the Radiological Society of North America Inc. 36(4):150115, 2016.

    Article  Google Scholar 

  3. Ming, Z., and Lin, Z., Evaluation of tracheal bronchus in Chinese children using multidetector CT. Pediatr. Radiol. 37:1230–1234, 2007.

    Article  PubMed  Google Scholar 

  4. Desir, A., and Ghaye, B., Congenital abnormalities of intrathoracic airways. Radiol. Clin. N. Am. 47(2):203–225, 2009.

    Article  PubMed  Google Scholar 

  5. Laroia, A.T., Thompson, B.H., Laroia, S.T., and van Beek, E.J.R., Modern imaging of the tracheo-bronchial tree. World. J. Radiol. 2(7):237–248, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pu, J., Gu, S., Liu, S., Zhu, S., Wilson, D., Siegfried, J.M., and Gur, D., CT based computerized identification and analysis of human airways: A review. Med. Phys. 39(5):2603–2616, 2011.

    Article  Google Scholar 

  7. Rubin, B.K., Dhand, R., Ruppel, G.L., Branson, R.D., and Hess, D.R., Respiratory care year inreview2010: Part 1. Asthma, COPD, pulmonary function testing, ventilator-associated pneumonia. Respir. Care. 56(4):488–502, 2011.

    Article  PubMed  Google Scholar 

  8. Ruppel, G.L., and Enright, P.L., Pulmonary function testing. Respir. Care. 57(1):165–175, 2012.

    Article  PubMed  Google Scholar 

  9. Burrowes, K.S., De Backer, J., Smallwood, R., Sterk, P.J., Gut, I., Wirix-Speetjens, R., Siddiqui, S., Owers-Bradley, J., Wild, J., Maier, D., and Brightling, C., Multi-scale computational models of the airways to unravel the pathophysiological mechanisms in asthma and chronic obstructive pulmonary disease (AirPROM). Interface Focus. 3(2):20120057, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kleinstreuer, C., and Zhang, Z., Airflow and particle transport in the human respiratory system. Annu. Rev. Fluid. Mech. 42(1–4):301–334, 2010.

    Article  Google Scholar 

  11. Yang, X.L., Liu, Y., and Luo, H.Y., Respiratory flow in obstructed airways. J. Biomech. 39(15):2743, 2006.

    Article  CAS  PubMed  Google Scholar 

  12. Luo, H.Y., Liu, Y., and Yang, X.L., Particle deposition in obstructed airways. J. Biomech. 40(14):3096, 2007.

    Article  CAS  PubMed  Google Scholar 

  13. Sul, B., Wallqvist, A., Morris, M.J., et al., A computational study of the respiratory airflow characteristics in normal and obstructed human airways. Comput. Biol. Med. 52(3):130–143, 2014.

    Article  PubMed  Google Scholar 

  14. Lin, C.L., Tawhai, M.H., Mclennan, G., and Hoffman, E.A., Multiscale simulation of gas flow in subject-specific models of the human lung. IEEE Eng. Med. Biol. 28(3):25–33, 2009.

    Article  CAS  Google Scholar 

  15. De Backer, J.W., Vos, W.G., Gorlé, C.D., et al., Flow analyses in the lower airways: Patient-specific model and boundary conditions. Med. Eng. Phys. 30(7):872, 2008.

    Article  PubMed  Google Scholar 

  16. De Rochefort, L., Vial, L., Fodil, R., Maitre, X., Louis, B., Isabey, D., Caillibotte, G., Thiriet, M., Bittoun, J., Durand, E., and Sbirlea-Apiou, G., In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3He magnetic resonance phase-contrast velocimetry. J. Appl. Physiol. 102(5):2012–2023, 2007.

    Article  PubMed  Google Scholar 

  17. De Backer JW, Vos WG, Vinchurkar SC, Claes R, Drollmann A, Wulfrank D, Parizel PM, Germonpre P, De Backer W (2010) Validation of computational fluid dynamics in CT-based airway models with SPECT/CT. Radiol 257(3):854–862.

  18. Vial, L., Perchet, D., Fodil, R., Caillibotte, G., Fetita, C., Preteux, F., Beigelman-Aubry, C., Grenier, P., Thiriet, M., Isabey, D., and Sbirlea-Apiou, G., Airflow modeling of steady inspiration in two realistic proximal airway trees reconstructed from human thoracic tomodensitometric images. Comput. Methods. Biomech. Biomed. Engin. 8(4):267–277, 2005.

    Article  PubMed  Google Scholar 

  19. Qi, S., Li, Z., Yue, Y., van Triest, H.J.W., and Kang, Y., Computational fluid dynamics simulation of airflow in the trachea and main bronchi for the subjects with left pulmonary artery sling. Biomed. Eng. Online. 13:85, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qi, S., Li, Z., Yue, Y., van Triest, H.J.W., Kang, Y., and Qian, W., Simulation analysis of deformation and stress of tracheal and main bronchial wall for the subjects with left pulmonary artery sling. J. Mech. Med. Biol. 15(6):1540053, 2015.

    Article  Google Scholar 

  21. Qi, S., Zhang, B., Teng, Y., Li, J., Yue, Y., Kang, Y., and Qian, W., Transient dynamics simulation of airflow in a CT-scanned human airway tree: More or fewer terminal bronchi? Comput. Math. Methods Med. 2017:1969023, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  22. De Backer, J.W., Vos, W.G., Devolder, A., Verhulst, S.L., Germonpre, P., Wuyts, F.L., Parizel, P.M., and De Backer, W., Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation. J. Biomech. 41(1):106–113, 2008.

    Article  PubMed  Google Scholar 

  23. Ho, C.Y., Liao, H.M., Tu, C.Y., Huang, C.Y., Shih, C.M., Su, M.Y., Chen, J.H., and Shih, T.C., Numerical analysis of airflow alteration in central airways following tracheobronchial stent placement. Exp. Hematol. Oncol. 1(1):23, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen, F.L., Horng, T.L., and Shih, T.C., Simulation analysis of airflow alteration in the trachea following the vascular ring surgery based on CT images using the computational fluid dynamics method. J. X-ray Sci. Technol. 22(2):213–225, 2014.

    Google Scholar 

  25. Bos, A.C., van Holsbeke, C., de Backer, J.W., van Westreenen, M., Janssens, H.M., Vos, W.G., et al., Patient-specific modeling of regional antibiotic concentration levels in airways of patients with cystic fibrosis: Are we dosing high enough? PLoS ONE10. 3:e0118454, 2015.

    Article  Google Scholar 

  26. Luo, H.Y., and Liu, Y., Modeling the bifurcating flow in a CT-scanned human lung airway. J. Biomech. 41(12):2681–2688, 2008.

    Article  CAS  PubMed  Google Scholar 

  27. Mylavarapu, G., Murugappan, S., Mihaescu, M., et al., Validation of computational fluid dynamics methodology used for human upper airway flow simulations. J. Biomech. 42(10):1553–1559, 2009.

    Article  PubMed  Google Scholar 

  28. Gemci, T., Ponyavin, V., Chen, Y., et al., Computational model of airflow in upper 17 generations of human respiratory tract. J. Biomech. 41(9):2047–2054, 2008.

    Article  CAS  PubMed  Google Scholar 

  29. Walters, D.K., Burgreen, G.W., Lavallee, D.M., Thompson, D.S., and Hester, R.L., Efficient, physiologically realistic lung airflow simulations. IEEE Trans. Biomed. Eng. 58(10):3016–3019, 2011.

    Article  PubMed  Google Scholar 

  30. Ma, B., and Lutchen, K.R., An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics. Ann. Biomed. Eng. 34(11):1691–1704, 2006.

    Article  PubMed  Google Scholar 

  31. Chen, S.J., Lee, W.J., Wang, J.K., et al., Usefulness of three-dimensional electron beam computed tomography for evaluating tracheobronchial anomalies in children with congenital heart disease. Am. J. Cardiol. 92(4):483–486, 2003.

    Article  PubMed  Google Scholar 

  32. Balásházy, I., and Hofmann, W., Deposition of aerosols in asymmetric airway bifurcations. J. Aerosol Sci. 26(2):273–292, 1995.

    Article  Google Scholar 

  33. Middleton, R.M., Littleton, J.T., Brickey, D.A., et al., Obstructed tracheal bronchus as a cause of post-obstructive pneumonia. J. Thorac. Imaging. 10(3):223–224, 1995.

    Article  CAS  PubMed  Google Scholar 

  34. Doolittle, A.M., and Mair, E.A., Tracheal bronchus: Classification, endoscopic analysis, and airway management. Otolaryngology--head and neck surgery: Official journal of American Academy of otolaryngology-head and neck Surgery. 126(3):240–243, 2002.

    Article  Google Scholar 

  35. Panigada, S., Sacco, O., Girosi, D., et al., Recurrent severe lower respiratory tract infections in a child with abnormal tracheal morphology. Pediatr. Pulmonol. 44(2):192–194, 2009.

    Article  PubMed  Google Scholar 

  36. Seo, T., Ando, H., Kaneko, K., et al., Two cases of prenatally diagnosed congenital lobar emphysema caused by lobar bronchial atresia. J. Pediatr. Surg. 41(11):17–20, 2006.

    Article  Google Scholar 

  37. Morikawa, N., Kuroda, T., Honna, T., et al., Congenital bronchial atresia in infants and children. J. Pediatr. Surg. 40(12):1822–1826, 2005.

    Article  PubMed  Google Scholar 

  38. Freitas, R.K., and Schroder, W., Numerical investigation of the three-dimensional flow in a human lung model. J. Biomech. 41(11):2446–2457, 2008.

    Article  PubMed  Google Scholar 

  39. Mott, L.S., Park, J., Gangell, C.L., de Klerk, N.H., Sly, P.D., Murray, C.P., and Stick, S.M., Distribution of early structural lung changes due to cystic fibrosis detected with chest computed tomography. J. Pediatr. 163(1):243–248, 2013.

    Article  PubMed  Google Scholar 

  40. Nakano, Y., Van Tho, N., Yamada, H., Osawa, M., and Nagao, T., Radiological approach to asthma and COPD--the role of computed tomography. Allergol. Int. 58(3):323–331, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors also acknowledge Mr. Paul Young for his helpful language editing.

Funding

This study was funded by the National Natural Science Foundation of China under Grant (Grant number: 81,671,773, 61,672,146).

Author information

Authors and Affiliations

Authors

Contributions

SQ: proposed the idea, performed experiments, analyzed the data, made discussions and composed the manuscript together with BZ, YT. YY and JS: provided CT images and radiology instruction, and made the discussions. WQ and JW: directed the experiments and made discussions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shouliang Qi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, S., Zhang, B., Yue, Y. et al. Airflow in Tracheobronchial Tree of Subjects with Tracheal Bronchus Simulated Using CT Image Based Models and CFD Method. J Med Syst 42, 65 (2018). https://doi.org/10.1007/s10916-017-0879-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0879-0

Keywords

Navigation