Skip to main content
Log in

Real-Time Medical Systems Based on Human Biometric Steganography: a Systematic Review

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In real-time medical systems, the role of biometric technology is significant in authentication systems because it is used in verifying the identity of people through their biometric features. The biometric technology provides crucial properties for biometric features that can support the process of personal identification. The storage of biometric template within a central database makes it vulnerable to attack which can also occur during data transmission. Therefore, an alternative mechanism of protection becomes important to develop. On this basis, this study focuses on providing a detailed analysis of the extant literature (2013–2018) to identify the taxonomy and research distribution. Furthermore, this study also seeks to ascertain the challenges and motivations associated with biometric steganography in real-time medical systems to provide recommendations that can enhance the efficient use of real-time medical systems in biometric steganography and its applications. A review of articles on human biometric steganography in real-time medical systems obtained from three main databases (IEEE Xplore, ScienceDirect and Web of Science) is conducted according to an appropriate review protocol. Then, 41 related articles are selected by using exclusion and inclusion criteria. Majority of the studies reviewed had been conducted in the field of data-hiding (particularly steganography) technologies. In this review, various steganographic methods that have been applied in different human biometrics are investigated. Thereafter, these methods are categorised according to taxonomy, and the results are presented on the basis of human steganography biometric real-time medical systems, testing and evaluation methods, significance of use and applications and techniques. Finally, recommendations on how the challenges associated with data hiding can be addressed are provided to enhance the efficiency of using biometric information processed in any authentication real-time medical system. These recommendations are expected to be immensely helpful to developers, company users and researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kiah, M. L. M. et al., Open source EMR software: Profiling, insights and hands-on analysis. Comput. Methods Prog. Biomed. 117(2):360–382, 2014.

    Article  CAS  Google Scholar 

  2. Barkadehi, M. H., Nilashi, M., Ibrahim, O., Fardi, A. Z., and Samad, S., Authentication systems: A literature review and classification. Telematics Inform. 35(5):1491–1511, 2018.

    Article  Google Scholar 

  3. Zaidan, B. B. et al., A security framework for Nationwide health information exchange based on telehealth strategy. J. Med. Syst. 39(5):51, 2015.

    Article  CAS  PubMed  Google Scholar 

  4. Abdulnabi, M. et al., A distributed framework for health information exchange using smartphone technologies. J. Biomed. Inform. 69:230–250, 2017.

    Article  PubMed  Google Scholar 

  5. Alanazi, H. O. et al., Meeting the security requirements of electronic medical records in the ERA of high-speed computing. J. Med. Syst. 39(1):165, 2015.

    Article  CAS  PubMed  Google Scholar 

  6. Hamdan, O. A. et al., Securing electronic medical records transmissions over unsecured communications: An overview for better medical governance. J. Med. Plants Res. 4(19):2059–2074, 2010.

    Article  Google Scholar 

  7. Akhmetov, B. S., Ivanov, A. I., Kartbayev, T. S., Kalizhanova, A. U., Mukapil, K., and Nabiyeva, G. S., Testing the quality of teaching the biometrical-code transformers. Procedia Soc. Behav. Sci. 191:2261–2266, 2015.

    Article  Google Scholar 

  8. Zaidan, A. A. et al., Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. J. Biomed. Inform. 53:390–404, 2015.

    Article  CAS  PubMed  Google Scholar 

  9. Kiah, M. L. M. et al., An enhanced security solution for electronic medical records based on AES hybrid technique with SOAP/XML and SHA-1. J. Med. Syst. 37(5):9971, 2013.

    Article  PubMed  Google Scholar 

  10. Albahri, A. S. et al., Real-time fault-tolerant mHealth system: Comprehensive review of healthcare services, opens issues, challenges and methodological aspects. J. Med. Syst. 42(8):137, 2018.

    Article  CAS  PubMed  Google Scholar 

  11. Islam, M. N., Islam, M. F., and Shahrabi, K., Robust information security system using steganography, orthogonal code and joint transform correlation. Optik (Stuttg). 126(23):4026–4031, 2015.

    Article  Google Scholar 

  12. Hussain, M. et al., Conceptual framework for the security of mobile health applications on android platform. Telematics Inform. 35(5):1335–1354, 2018.

    Article  Google Scholar 

  13. Zaidan, B. B. et al., A new digital watermarking evaluation and benchmarking methodology using an external group of evaluators and multi-criteria analysis based on ‘large-scale data. Softw. Pract. Exp. 47(10):1365–1392, 2017.

    Article  Google Scholar 

  14. Conference, I., Technologies, C., Engineering, C., Thirunnal, S. C., and Email, K., Chaotic system based image encryption of biometric characteristics for enhanced security, pp 1–6, 2017.

  15. Zaidan, B. B., and Zaidan, A. A., Software and hardware FPGA-based digital watermarking and steganography approaches: Toward new methodology for evaluation and benchmarking using multi-criteria decision-making techniques. J. Circuits, Syst. Comput. 26(07):1750116, 2017.

    Article  Google Scholar 

  16. Zaidan, A. A. et al., Multi-criteria analysis for OS-EMR software selection problem: A comparative study. Decis. Support. Syst. 78:15–27, 2015.

    Article  Google Scholar 

  17. Zaidan, B. B. et al., Impact of data privacy and confidentiality on developing telemedicine applications: A review participates opinion and expert concerns. Int. J. Pharmacol. 7(3):382–387, 2011.

    Article  Google Scholar 

  18. Zaidan, B. B. et al., A new approach based on multi-dimensional evaluation and benchmarking for data hiding techniques. Int. J. Inf. Technol. Decis. Mak.:1–42, 2017.

  19. Alanazi, H. O. et al., Using the features of mosaic image and AES cryptosystem to implement an extremely high rate and high secure data hidden : Analytical study. Sci. Res. Essays 5(21):3254–3260, 2010.

    Google Scholar 

  20. Zaidan, B. B. et al., On the differences between hiding information and cryptography techniques: An overview. J. Appl. Sci. 10(15):1650–1655, 2010.

    Article  Google Scholar 

  21. Salman, O. H. et al., Novel methodology for triage and prioritizing using ‘big data’ patients with chronic heart diseases through telemedicine environmental. Int. J. Inf. Technol. Decis. Mak. 16(05):1211–1245, 2017.

    Article  Google Scholar 

  22. Albahri, O. S. et al., Real-time remote health-monitoring systems in a Medical Centre: A review of the provision of healthcare services-based body sensor information, open challenges and methodological aspects. J. Med. Syst. 42(9):164, 2018.

    Article  CAS  PubMed  Google Scholar 

  23. Kalid, N. et al., Based on real time remote health monitoring systems: A new approach for prioritization ‘large scales data’ patients with chronic heart diseases using body sensors and communication technology. J. Med. Syst. 42(4):69, 2018.

    Article  PubMed  Google Scholar 

  24. Naji, A. W. et al., ‘Stego-analysis chain, session one’ investigations on steganography weakness VS stego-analysis system for multimedia file. In: 2009 International Association of Computer Science and Information Technology - Spring Conference, IACSIT-SC 2009, pp. 405–409, 2009.

  25. Iqbal, S. et al., Real-time-based E-health systems: Design and implementation of a lightweight key management protocol for securing sensitive information of patients. Health Technol. (Berl).:1–19, 2018.

  26. Rashid, R. D., Sellahewa, H., and Jassim, S. A., Biometric feature embedding using robust steganography technique. Mob. Multimedia/Image Process. Secur. Appl. 8755:1–12, 2013.

    Google Scholar 

  27. Zaidan, A. A. et al., Challenges, alternatives, and paths to sustainability: Better public health promotion using social networking pages as key tools. J. Med. Syst. 39(2):7, 2015.

    Article  CAS  PubMed  Google Scholar 

  28. Banerjee, I., Bhattacharyya, S., Mukherjee, S., and Sanyal, G., Biometric steganography using face geometry. IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2015–Janua, no. April 2017, 2015.

  29. Al-Ani, Z. K. et al., Overview: Main fundamentals for steganography, undefined, 2010.

  30. Naji, A. W. et al., New approach of hidden data in the portable executable file without change the size of carrier file using statistical technique. Int. J. Comput. Sci. Netw. Secur. 9(7):218–224, 2009.

    Google Scholar 

  31. Khalifa, O. O. et al., Novel approach of hidden data in the (unused area 2 within EXE file) using computation between cryptography and steganography. Int. J. Comput. Sci. Netw. Secur. 9(5):294–300, 2010.

    Google Scholar 

  32. Zaidan, A. A. et al., Novel approach for high (secure and rate) data hidden within triplex space for executable file. Sci. Res. Essays 5(15):1965–1977, 2010.

    Google Scholar 

  33. Zaidan, A. A. et al., A new system for hiding data within (unused area two image page) of portable executable file using statistical technique and advance encryption standard. Int. J. Comp. Theory Eng. 2:218–225, 2010.

    Article  Google Scholar 

  34. Salem, Y. et al., A review on multimedia communications cryptography. Res. J. Inf. Technol. 3:146–152, 2011.

    Google Scholar 

  35. Hmood, A. K. et al., On the accuracy of hiding information metrics: Counterfeit protection for education and important certificates. International Journal of Physical Sciences 5(7):1054–1062, 2010.

    Google Scholar 

  36. Abomhara, M. et al., Suitability of using symmetric key to secure multimedia data: An overview. J. Appl. Sci. 10(15):1656–1661, 2010.

    Article  Google Scholar 

  37. Jalab, H. A. et al., New design for information hiding with in steganography using distortion techniques. ijetch.org 2(1), 2010.

  38. Jalab, H. A. et al., Frame selected approach for hiding data within MPEG video using bit plane complexity segmentation. J. Comput. 1(1):108–113, 2009.

    Google Scholar 

  39. Naji, A. W. et al., Challenges of hidden data in the unused area two within executable files. J. Comput. Sci. 5(11):890–897, 2009.

    Article  Google Scholar 

  40. Al-Frajat, A. K. et al., Hiding data in video file: An overview. J. Appl. Sci. 10(15):1644–1649, 2010.

    Article  Google Scholar 

  41. Kiah, M. L. M. et al., A review of audio based steganography and digital watermarking. Int. J. Phys. Sci. 6(16):3837–3850, 2011.

    Google Scholar 

  42. Yas, Q. M. et al., Towards on develop a framework for the evaluation and benchmarking of skin detectors based on artificial intelligent models using multi-criteria decision-making techniques. Int. J. Pattern Recognit. Artif. Intell. 31(03):1759002, 2017.

    Article  Google Scholar 

  43. Aos, A. Z. et al., Approved undetectable-antivirus steganography for multimedia information in PE-file. In: 2009 International Association of Computer Science and Information Technology - Spring Conference, IACSIT-SC 2009, pp. 437441, 2009.

  44. Zaidan, A. A. et al., Securing cover-file without limitation of hidden data size using computation between cryptography and steganography. In: Proceedings of the World Congress on Engineering, vol. I, 2009.

  45. Zaidan, A. A., and Zaidan, B. B., Novel approach for high secure data hidden in MPEG video using public key infrastructure. Int. J. Comput. Netw. Secur. 1(1):1553–1985, 2009.

    Google Scholar 

  46. Naji, A. W. et al., Novel approach for secure cover file of hidden data in the unused area within EXE file using computation between cryptography and steganography. J. Comput. Sci. 9(5):294–300, 2009.

    Google Scholar 

  47. Peethala, M. B., and Kulkarni, S., Integrating biometric cryptosystem with steganography for authentication. no. December, pp. 19–21, 2016.

  48. Naji, A. W. et al., New system for secure cover file of hidden data in the image page within executable file using statistical steganography techniques. Int. J. Comput. Sci. Inf. Secur. 7(1):273–279, 2009.

    Google Scholar 

  49. Zaidan, A. A. et al., Approved undetectable-antivirus steganography for multimedia information in PE-file. In: International Conference on IACSIT Spring Conference (IACSIT-SC09), Advanced Management Science (AMS), Listed in IEEE Xplore and be indexed by both EI (Compendex) and ISI Thomson (ISTP), Session, vol. 9, pp. 425–429, 2009.

  50. Majeed, A. et al., Novel approach for high secure and high rate data hidden in the image using image texture analysis. Int. J. Eng. Technol 1(2):63–69, 2009.

    Google Scholar 

  51. Zaidan, A. A. et al., High securing cover-file of hidden data using statistical technique and AES encryption algorithm. World Acad. Sci. Eng. Technol. 54:463–474, 2009.

    Google Scholar 

  52. Zaidan, A. A. et al., New technique of hidden data in PE-file with in unused area one. Int. J. Comput. Electr. Eng. 1(5):642–650, 2009.

    Article  Google Scholar 

  53. Hmood, A. K. et al., An overview on hiding information technique in images. J. Appl. Sci. 10(18):2094–2100, 2010.

    Article  Google Scholar 

  54. Naji, A. W. et al., Novel approach for cover file of hidden data in the unused area two within EXE file using distortion techniques and advance encryption standard. Proceeding World Acad. Sci. Eng. Technol. 56(5):498–502, 2010.

    Google Scholar 

  55. Naji, A. W. et al., Novel framework for hidden data in the image page within executable file using computation between advanced encryption standard and distortion techniques. Int. J. Comput. Sci. Inf. Secur. 3(1):1–6, 2009.

    Google Scholar 

  56. Zaidan, B. B. et al., Stego-image vs stego-analysis system. Citeseer 1(5):1793–8163, 2009.

    Google Scholar 

  57. Zaidan, B. B. et al., Quality of image vs. quantity of data hidden in the image. IPCV 6:343–350, 2009.

    Google Scholar 

  58. Zaidan, B. B. et al., StegoMos: A secure novel approach of high rate data hidden using mosaic image and ANN-BMP cryptosystem. Int. J. Phys. Sci. 5(11):1796–1806, 2010.

    Google Scholar 

  59. Ahmed, M. A. et al., A novel embedding method to increase capacity and robustness of low-bit encoding audio steganography technique using noise gate software logic algorithm. J. Appl. Sci. 10(1):59–64, 2010.

    Article  Google Scholar 

  60. Taqa, A. et al., New framework for high secure data hidden in the MPEG using AES encryption algorithm. Citeseer 1(5):8163, 2009.

    Google Scholar 

  61. Zaidan, A. A. et al., Implementation stage for high securing cover-file of hidden data using computation between cryptography and steganography. Int. Assoc. Comput. Sci. Inf. Technol. (IACSIT), Index. by Nielsen, Thomson ISI (ISTP), IACSIT Database, Br. Libr. EI Compend., vol. 20, 2009.

  62. Abomhara, M. et al., Video compression techniques: An overview. J. Appl. Sci. 10(16):1834–1840, 2010.

    Article  Google Scholar 

  63. Mat Kiah, M. L. et al., Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture. J. Med. Syst. 38(10):133, 2014.

    Article  CAS  PubMed  Google Scholar 

  64. Zaidan, A. A. et al., Novel multi-cover steganography using remote sensing image and general recursion neural cryptosystem. Int. J. Phys. Sci. 5(11):1776–1786, 2010.

    Google Scholar 

  65. Kiah, M. L. M. et al., MIRASS: Medical informatics research activity support system using information mashup network. J. Med. Syst. 38(4):37, 2014.

    Article  CAS  PubMed  Google Scholar 

  66. Eltahir, M. E. et al., High rate video streaming steganography. In: 2009 International Conference on Information Management and Engineering, pp. 550553, 2009.

  67. Hussain, M. et al., The landscape of research on smartphone medical apps: Coherent taxonomy, motivations, open challenges and recommendations. Comput. Methods Prog. Biomed. 122(3):393–408, 2015.

    Article  Google Scholar 

  68. Zaidan, A. A. et al., A survey on communication components for IoT-based technologies in smart homes. Telecommun. Syst. 69(1):1–25, 2018.

    Article  Google Scholar 

  69. Albahri, O. S. et al., Systematic review of real-time remote health monitoring system in triage and priority-based sensor technology: Taxonomy, open challenges, motivation and recommendations. J. Med. Syst. 42(5):80, 2018.

    Article  CAS  PubMed  Google Scholar 

  70. Alaa, M. et al., A review of smart home applications based on internet of things. J. Netw. Comput. Appl. 97(1):48–65, 2017.

    Article  Google Scholar 

  71. Zaidan, A. A. et al., A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: Coherent taxonomy, open issues and recommendation pathway solution. Health Technol. (Berl) 8(4):223–238, 2018.

    Article  Google Scholar 

  72. Alsalem, M. A. et al., Systematic review of an automated multiclass detection and classification system for acute Leukaemia in terms of evaluation and benchmarking, open challenges, issues and methodological aspects. J. Med. Syst. 42(11):204, 2018.

    Article  CAS  PubMed  Google Scholar 

  73. Alsalem, M. A. et al., A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations. Comput. Methods Prog. Biomed. 158:93–112, 2018.

    Article  CAS  Google Scholar 

  74. Abduljabbar, Z. A. et al., Robust image document authentication code with autonomous biometrie key generation, selection, and updating in cloud environment. Proc. 2015 11th Int. Conf. Inf. Assur. Secur. IAS 2015, pp. 61–66, 2016.

  75. Abduljabbar, Z. A. et al., Robust scheme to protect authentication code of message/image documents in cloud computing. 2016 Int. Conf. Comput. Netw. Commun. ICNC 2016, 2016.

  76. Anbarasi, L. J., Mala, G. S. A., and Narendra, M., DNA based multi-secret image sharing. Procedia Comput. Sci. 46:1794–1801, 2015.

    Article  Google Scholar 

  77. Barman, S., Samanta, D., and Chattopadhyay, S., Fingerprint-based crypto-biometric system for network security. EURASIP J. Inf. Secur. 2015(1):1–17, 2015.

    Article  Google Scholar 

  78. Chaudhary, S., and Nath, R., A new template protection approach for iris recognition. 2015 4th Int. Conf. Reliab. Infocom Technol. Optim. Trends Futur. Dir. ICRITO 2015, pp. 2–7, 2015.

  79. Choudhury, B., Then, P., Raman, V., Issac, B., and Haldar, M. K., Cancelable iris Biometrics based on data hiding schemes. Proc. - 14th IEEE Student Conf. Res. Dev. Adv. Technol. Humanit. SCOReD 2016, pp. 1–6, 2017.

  80. Das, P., Deb, S., Kar, N., and Bhattacharya, B., An improved DNA based dual cover steganography. Procedia Comput. Sci. 46:604–611, 2015.

    Article  Google Scholar 

  81. Gupta, H., and Sharma, N., A model for biometric security using visual cryptography. 2016 5th Int. Conf. Reliab. Infocom Technol. Optim. ICRITO 2016 Trends Futur. Dir., pp. 328–332, 2016.

  82. Hussain, A., Simple encryption encoding for data hiding and security applications, pp. 1621–1628, 2013.

  83. Islam, M. N., Islam, M. F., and Shahrabi, K., Enhanced information security employing orthogonal code, steganography and joint transform correlation. Opt. Pattern Recognit. Xxiv 8748:1–11, 2013.

    Google Scholar 

  84. Jhodge, S., Chiddarwar, G., and Shinde, G., A new SAFR tool for face recognition using EGVLBP-CMI-LDA wrapped with secured DWT based steganography. Proc. 2013 3rd IEEE Int. Adv. Comput. Conf. IACC 2013, pp. 1040–1050, 2013.

  85. Koptyra, K., and Ogiela, M. R., Fuzzy vault schemes in multi-secret digital steganography. Proc. - 2015 10th Int. Conf. Broadband Wirel. Comput. Commun. Appl. BWCCA 2015, pp. 183–186, 2015.

  86. Kude, M., and Borse, M., Skintone Detection Base steganography using wavelet transform. Transform. Appl. Handb.:440–443, 2016.

  87. Maheshwari, A., and Dorairangaswamy, M. A., Multimodal biometrics security system for authentication. 2016 2nd Int. Conf. Sci. Technol. Eng. Manag. ICONSTEM 2016, pp. 146–150, 2016.

  88. Misbahuddin, M., and Sreeja, C. S., A secure image-based authentication scheme employing DNA crypto and steganography. Proc. Third Int. Symp. Women Comput. Informatics - WCI ‘15, pp. 595–601, 2015.

  89. Rashid, R. D., Jassim, S. A., and Sellahewa, H., Covert exchange of face biometric data using steganography, pp. 134–139, 2013.

  90. Seleym, A., A high-rate chaotic secured covert channel based on multiple embedding in images, pp. 286–292, 2013.

  91. Al-Assam, H., Rashid, R., and Jassim, S., Combining steganography and biometric cryptosystems for secure mutual authentication and key exchange. 8th Int. Conf. Internet Technol. Secur. Trans., no. December, 2013.

  92. Stefa, M., and Wilkowski, A., Printed steganography applied for the authentication of identity photos in face verification. 2015 IEEE 2nd Int. Conf. Cybern., 2015.

  93. Whitelam, C., Osia, N., and Bourlai, T., Securing multimodal biometric data through watermarking and steganography. 2013 IEEE Int. Conf. Technol. Homel. Secur. HST 2013, vol. 5, no. 1, pp. 61–66, 2013.

  94. Alruban, A., Clarke, N., Li, F., and Furnell, S., Insider misuse attribution using biometrics. Proc. 12th Int. Conf. Availability, Reliab. Secur. - ARES ‘17, pp. 1–7, 2017.

  95. Barkathunisha, S., and Meenakumari, R., Secure transmission of medical information U sing IRIS recognition and steganography, pp. 89–92, 2013.

  96. Edward Jero, S., Ramu, P., and Ramakrishnan, S., ECG steganography using curvelet transform. Biomed. Signal Process. Control 22:161–169, 2015.

    Article  Google Scholar 

  97. Liji, C. A., Indiradevi, K. P., and Babu, K. K. A., Integer-to-integer wavelet transform based ECG steganography for securing patient confidential information. Procedia Technol. 24:1039–1047, 2016.

    Article  Google Scholar 

  98. Premarathne, U. et al., Hybrid cryptographic access control for cloud-based EHR systems. IEEE Cloud Comput. 3(4):58–64, 2016.

    Article  Google Scholar 

  99. Sahu, N., Peng, D., and Sharif, H., Unequal steganography with unequal error protection for wireless physiological signal transmission. IEEE Int. Conf. Commun., 2017.

  100. Sankari, V., and Prof, A., Steganography technique to secure patient confidential information using ECG Signal, no. 978, 2014.

  101. Sivaranjani, D. N. R. B., Securing patient’s confidiential information using ECG steganography, no. Icces, pp. 540–544, 2017.

  102. Edward Jero, S., Ramu, P., and Swaminathan, R., Imperceptibility - robustness tradeoff studies for ECG steganography using continuous ant colony optimization. Expert Syst. Appl. 49:123–135, 2016.

    Article  Google Scholar 

  103. Elhoseny, M., Ramirez-Gonzalez, G., Abu-Elnasr, O. M., Shawkat, S. A., Arunkumar, N., and Farouk, A., Secure medical data transmission model for IoT-based healthcare systems. IEEE Access 6:1–1, 2018.

    Article  Google Scholar 

  104. Hossain, K., and Jana, S., A novel approach to secure biomedical images and videos for transmission, pp. 120–125, 2017.

  105. Prabakaran, G., Bhavani, R., and Rajeswari, P. S., Multi secure and robustness for medical image based steganography scheme. Proc. IEEE Int. Conf. Circuit, Power Comput. Technol. ICCPCT 2013, pp. 11881193, 2013.

  106. Lozhnikov, P. S., Sulavko, A. E., Eremenko, A. V., and Volkov, D. A., Method of protecting paper and electronic text documents through a hidden biometric identifier based on a signature, 2016 Dyn. Syst. Mech. Mach. Dyn. 2016, 2017.

  107. Padilla-López, J. R., Chaaraoui, A. A., and Flórez-Revuelta, F., Visual privacy protection methods: A survey. Expert Syst. Appl. 42(9):4177–4195, 2015.

    Article  Google Scholar 

  108. Sreeja, C. S., Misbahuddin, M., and Mohammed Hashim, N. P., DNA for information security: A survey on DNA computing and a pseudo DNA method based on central dogma of molecular biology. Int. Conf. Comput. Commun. Technol. ICCCT 2014, pp. 1–6, 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zaidan.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants in the study.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsin, A.H., Zaidan, A.A., Zaidan, B.B. et al. Real-Time Medical Systems Based on Human Biometric Steganography: a Systematic Review. J Med Syst 42, 245 (2018). https://doi.org/10.1007/s10916-018-1103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-1103-6

Keywords

Navigation