Skip to main content

Advertisement

Log in

A Machine Learning Approach to Predicting Case Duration for Robot-Assisted Surgery

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Robot-assisted surgery (RAS) requires a large capital investment by healthcare organizations. The cost of a robotic unit is fixed, so institutions must maximize use of each unit by utilizing all available operating room block time. One way to increase utilization is to accurately predict case durations. In this study, we sought to use machine learning to develop an accurate predictive model for RAS case duration. We analyzed a random sample of robotic cases at our institution from January 2014 to June 2017. We compared the machine learning models to the baseline model, which is the scheduled case duration (determined by previous case duration averages and surgeon adjustments). Specifically, we used: 1) multivariable linear regression, 2) ridge regression, 3) lasso regression, 4) random forest, 5) boosted regression tree, and 6) neural network. We found that all machine learning models decreased the average root-mean-squared error (RMSE) as compared to the baseline model. The average RMSE was lowest with the boosted regression tree (80.2 min, 95% CI 74.0–86.4), which was significantly lower than the baseline model (100.4 min, 95% CI 90.5–110.3). Using boosted regression tree, we can increase the number of accurately booked cases from 148 to 219 (34.9% to 51.7%, p < 0.001). This study shows that using various machine learning approaches can improve the accuracy of RAS case length predictions, which will increase utilization of this limited resource. Further work is needed to operationalize these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cima, R. R., Brown, M. J., Hebl, J. R., Moore, R., Rogers, J. C., Kollengode, A., Amstutz, G. J., Weisbrod, C. A., Narr, B. J., and Deschamps, C., Use of lean and six sigma methodology to improve operating room efficiency in a high-volume tertiary-care academic medical center. J. Am. Coll. Surg. 213:83–92, 2011. https://doi.org/10.1016/j.jamcollsurg.2011.02.009.

    Article  PubMed  Google Scholar 

  2. Macario, A., What does one minute of operating room time cost? J. Clin. Anesth. 22:233–236, 2010. https://doi.org/10.1016/j.jclinane.2010.02.003.

    Article  PubMed  Google Scholar 

  3. Eijkemans, M. J., van Houdenhoven, M., Nguyen, T., Boersma, E., Steyerberg, E. W., and Kazemier, G., Predicting the unpredictable. Anesthesiology 112:41–49, 2010. https://doi.org/10.1016/j.jacc.2015.12.063.

    Article  PubMed  Google Scholar 

  4. Intuitive Surgical (2016) Intuitive Surgical, Inc. 2016 Annual Report

  5. Higgins, R. M., Frelich, M. J., Bosler, M. E., and Gould, J. C., Cost analysis of robotic versus laparoscopic general surgery procedures. Surg. Endosc. 31:185–192, 2017. https://doi.org/10.1007/s00464-016-4954-2.

    Article  PubMed  Google Scholar 

  6. Barbash, G. I., and Glied, S. A., New technology and health care costs - the case of robot-assisted surgery. N. Engl. J. Med. 363:701–704, 2010.

    Article  CAS  Google Scholar 

  7. Zhou, J., Dexter, F., MacArio, A., and Lubarsky, D. A., Relying solely on historical surgical times to estimate accurately future surgical times is unlikely to reduce the average length of time cases finish late. J. Clin. Anesth. 11:601–605, 1999. https://doi.org/10.1016/S0952-8180(99)00110-5.

    Article  CAS  PubMed  Google Scholar 

  8. Wright, I. H., Kooperberg, C., Bonar, B. A., and Bashein, G., Statistical modeling to predict elective surgery time. Anesthesiology 85:1235–1245, 1996. https://doi.org/10.1167/8.5.1.

    Article  CAS  PubMed  Google Scholar 

  9. Pandit, J. J., and Carey, A., Estimating the duration of common elective operations: implications for operating list management. Anaesthesia 61:768–776, 2006. https://doi.org/10.1111/j.1365-2044.2006.04719.x.

    Article  CAS  PubMed  Google Scholar 

  10. Kougias, P., Tiwari, V., and Berger, D. H., Use of simulation to assess a statistically driven surgical scheduling system. J. Surg. Res. 201:306–312, 2016. https://doi.org/10.1016/j.jss.2015.10.043.

    Article  PubMed  Google Scholar 

  11. Wu, A., Weaver, M. J., Heng, M. M., and Urman, R. D., Predictive model of surgical time for revision total hip arthroplasty. J. Arthroplast. 32:2214–2218, 2017. https://doi.org/10.1016/j.arth.2017.01.056.

    Article  Google Scholar 

  12. Okike, K., O’Toole, R. V., Pollak, A. N., Bishop, J. A., McAndrew, C. M., Mehta, S., Cross, W. W., Garrigues, G. E., Harris, M. B., and Lebrun, C. T., Survey finds few orthopedic surgeons know the costs of the devices they implant. Health Aff. 33:103–109, 2014. https://doi.org/10.1377/hlthaff.2013.0453.

    Article  Google Scholar 

  13. Kayış, E., Wang, H., Patel, M., Gonzalez, T., Jain, S., Ramamurthi, R. J., Santos, C., Singhal, S., Suermondt, J., and Sylvester, K., Improving prediction of surgery duration using operational and temporal factors. AMIA Ann. Symp. Proc.:456–462, 2012.

  14. Smith, C. D., Spackman, T., Brommer, K., Stewart, M. W., Vizzini, M., Frye, J., and Rupp, W. C., Re-engineering the operating room using variability methodology to improve health care value. J. Am. Coll. Surg. 216:559–570, 2013. https://doi.org/10.1016/j.jamcollsurg.2012.12.046.

    Article  PubMed  Google Scholar 

  15. Tagge, E. P., Thirumoorthi, A. S., Lenart, J., Garberoglio, C., and Mitchell, K. W., Improving operating room efficiency in academic children’s hospital using lean six sigma methodology. J. Pediatr. Surg. 52:1040–1044, 2017. https://doi.org/10.1016/j.jpedsurg.2017.03.035.

    Article  PubMed  Google Scholar 

  16. Strum, D. P., Sampson, A. R., May, J. H., and Vargas, L. G., Surgeon and type of anesthesia predict variability in surgical procedure times. Anesthesiology 92:1454–1466, 2000. https://doi.org/10.1097/00000542-200005000-00036.

    Article  CAS  PubMed  Google Scholar 

  17. Dexter, F., and Epstein, R. H., Operating room efficiency and scheduling. Curr. Opin. Anaesthesiol. 18:195–198, 2005. https://doi.org/10.1097/01.aco.0000162840.02087.15.

    Article  PubMed  Google Scholar 

  18. Stepaniak, P. S., Heij, C., Mannaerts, G. H. H., De Quelerij, M., and De Vries, G., Modeling procedure and surgical times for current procedural terminology-anesthesia-surgeon combinations and evaluation in terms of case-duration prediction and operating room efficiency: a multicenter study. Anesth. Analg. 109:1232–1245, 2009. https://doi.org/10.1213/ANE.0b013e3181b5de07.

    Article  PubMed  Google Scholar 

  19. Dexter, F., Macario, A., Traub, R. D., Hopwood, M., and Lubarsky, D. A., An operating room scheduling strategy to maximize the use of operating room block time: computer simulation of patient scheduling and survey of patients’ preferences for surgical waiting time. Anesth. Analg. 89:7–20, 1999. https://doi.org/10.1097/00000539-199907000-00003.

    Article  CAS  PubMed  Google Scholar 

  20. Tiwari, V., Dexter, F., Rothman, B. S., Ehrenfeld, J. M., and Epstein, R. H., Explanation for the near-constant mean time remaining in surgical cases exceeding their estimated duration, necessary for appropriate display on electronic white boards. Anesth. Analg. 117:487–493, 2013. https://doi.org/10.1213/ANE.0b013e31829772e9.

    Article  PubMed  Google Scholar 

  21. Dexter, F., Ledolter, J., Tiwari, V., and Epstein, R. H., Value of a scheduled duration quantified in terms of equivalent numbers of historical cases. Anesth. Analg. 117:205–210, 2013. https://doi.org/10.1213/ANE.0b013e318291d388.

    Article  PubMed  Google Scholar 

  22. Bejnordi, B. E., Veta, M., Van Diest, P. J., Van Ginneken, B., Karssemeijer, N., Litjens, G., Van Der Laak, J. A. W. M., Hermsen, M., Manson, Q. F., Balkenhol, M., Geessink, O., Stathonikos, N., Van Dijk, M. C. R. F., Bult, P., Beca, F., Beck, A. H., Wang, D., Khosla, A., Gargeya, R., Irshad, H., Zhong, A., Dou, Q., Li, Q., Chen, H., Lin, H. J., Heng, P. A., Haß, C., Bruni, E., Wong, Q., Halici, U., Öner, M. Ü., Cetin-Atalay, R., Berseth, M., Khvatkov, V., Vylegzhanin, A., Kraus, O., Shaban, M., Rajpoot, N., Awan, R., Sirinukunwattana, K., Qaiser, T., Tsang, Y. W., Tellez, D., Annuscheit, J., Hufnagl, P., Valkonen, M., Kartasalo, K., Latonen, L., Ruusuvuori, P., Liimatainen, K., Albarqouni, S., Mungal, B., George, A., Demirci, S., Navab, N., Watanabe, S., Seno, S., Takenaka, Y., Matsuda, H., Phoulady, H. A., Kovalev, V., Kalinovsky, A., Liauchuk, V., Bueno, G., Fernandez-Carrobles, M. M., Serrano, I., Deniz, O., Racoceanu, D., and Venâncio, R., Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318:2199–2210, 2017. https://doi.org/10.1001/jama.2017.14585.

    Article  Google Scholar 

  23. Upstill-Goddard, R., Eccles, D., Fliege, J., and Collins, A., Machine learning approaches for the discovery of gene-gene interactions in disease data. Brief. Bioinform. 14:251–260, 2013. https://doi.org/10.1093/bib/bbs024.

    Article  CAS  PubMed  Google Scholar 

  24. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., and Sánchez, C. I., A survey on deep learning in medical image analysis. Med. Image Anal. 42:60–88, 2017. https://doi.org/10.1016/j.media.2017.07.005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Beiqun Zhao is funded by the National Library of Medicine Training Grant: NIH grant T15LM011271.

Funding

This study was funded by the National Library of Medicine Training Grant (T15LM011271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beiqun Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Waterman, R.S., Urman, R.D. et al. A Machine Learning Approach to Predicting Case Duration for Robot-Assisted Surgery. J Med Syst 43, 32 (2019). https://doi.org/10.1007/s10916-018-1151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-1151-y

Keywords

Navigation