Skip to main content
Log in

A Survey of Healthcare Monitoring Systems for Chronically Ill Patients and Elderly

  • Mobile & Wireless Health
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The demand of healthcare systems for chronically ill patients and elderly has increased in the last few years. This demand is derived by the necessity to allow patients and elderly to be independent in their homes without the help of their relatives or caregivers. The prosperity of the information technology plays an essential role in healthcare by providing continuous monitoring and alerting mechanisms. In this paper, we survey the most recent applications in healthcare monitoring. We organize the applications into categories and present their common architecture. Moreover, we explain the standards used and challenges faced in this field. Finally, we make a comparison between the presented applications and discuss the possible future research paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhatia, D., Estevez, L., and Rao, S.: Energy efficient contextual sensing for elderly care. In: IEEE 29th Annual International Conference on Engineering in Medicine and Biology Society (EMBS), pp. 4052–4055, 2007. https://doi.org/10.1109/IEMBS.2007.4353223.

  2. Ortman, J. M., Velkoff, V. A., and Hogan, H.: An aging nation: the older population in the United States, Washington, DC: US Census Bureau, 25–1140, 2014

  3. Sadri, F., Ambient Intelligence: a survey. ACM Comput. Surv. 43(4):36:1–36:66, 2011. https://doi.org/10.1145/1978802.1978815.

    Article  Google Scholar 

  4. Active Assested Living Programme (ALL), Accessed: Dec 1, 2018. http://www.aal-europe.eu

  5. International Telecommunication Union (ITU), Accessed: Dec 1, 2018. http://www.itu.int/en/Pages/default.aspx

  6. The International Federation for Medical and Biological Engineering (IFMBE), Accessed: Dec 1, 2018. http://ifmbe.org

  7. World Health Organization (WHO), Accessed: Dec 1, 2018. http://www.who.int/en

  8. Health-IT, Accessed: Dec 1, 2018. http://committees.comsoc.org/ehealth

  9. Anliker, U., Ward, J., Lukowicz, P., Troster, G., Dolveck, F., Baer, M., Keita, F., Schenker, E., Catarsi, F., Coluccini, L., Belardinelli, A., Shklarski, D., Alon, M., Hirt, E., Schmid, R., and Vuskovic, M., AMON: a wearable multiparameter medical monitoring and alert system. IEEE Trans. Inf. Technol. Biomed. 8(4):415–427, 2004. https://doi.org/10.1109/TITB.2004.837888.

    Article  PubMed  Google Scholar 

  10. Sung, M., Marci, C., and Pentland, A., Wearable feedback systems for rehabilitation. J. Neuroeng. Rehabil. 2(1):17, 2005.

    Article  Google Scholar 

  11. Di Rienzo, M., Rizzo, F., Parati, G., Brambilla, G., Ferratini, M., and Castiglioni, P.: MagIC system: a new textile-based wearable device for biological signal monitoring. applicability in daily life and clinical setting. In: IEEE 27th Annual International Conference on Engineering in Medicine and Biology Society (EMBS), pp. 7167–7169, 2005. https://doi.org/10.1109/IEMBS.2005.1616161.

  12. Jih, W.-R., Hsu, J. Y.-J., Wu, C.-L., Liao, C.-F., and Cheng, S.-Y.: A multi-agent service framework for context-aware elder care. In: Proceedings of AAAMAS Workshop on Service-Oriented Computing and Agent-Based Engineering, pp. 61–75, 2006.

  13. Wang, Q., Shin, W., Liu, X., Zeng, Z., Oh, C., AlShebli, B., Caccamo, M., Gunter, C., Gunter, E., Hou, J., Karahalios, K., and Sha, L., I-living: an open system architecture for assisted living. Systems, Man and Cybernetics 5:4268–4275, 2006. https://doi.org/10.1109/ICSMC.2006.384805.

    Article  Google Scholar 

  14. Yao, J., and Warren, S., Applying the ISO/IEEE 11073 standards to wearable home health monitoring systems. J. Clin. Monit. Comput. 19(6):427–436, 2005. https://doi.org/10.1007/s10877-005-2033-7.

    Article  PubMed  Google Scholar 

  15. Harris, M., and Habetha, J.: The MyHeart project: a framework for personal health care applications. In: Computers in Cardiology, pp. 137–140, 2007. https://doi.org/10.1109/CIC.2007.4745440.

  16. She, H., Lu, Z., Jantsch, A., Zheng, L.-R., and Zhou, D.: A network-based system architecture for remote medical applications. In: Network Research Workshop, Vol. 27, 2007.

  17. Lymberis, A., and Paradiso, R.: Smart fabrics and interactive textile enabling wearable personal applications: R&D state of the art and future challenges. In: IEEE 30th Annual International Conference on Engineering in Medicine and Biology Society (EMBS), pp. 5270–5273, 2008. https://doi.org/10.1109/IEMBS.2008.4650403.

  18. Churcher, G., Bilchev, G., Foley, J., Gedge, R., and Mizutani, T.: Experiences applying sensor web enablement to a practical telecare application. In: 3rd International Symposium on Wireless Pervasive Computing (ISWPC), pp. 138–142, 2008. https://doi.org/10.1109/ISWPC.2008.4556183.

  19. Lorincz, K., Chen, B.-R., Challen, G. W., Chowdhury, A. R., Patel, S., Bonato, P., and Welsh, M.: Mercury: a wearable sensor network platform for high-fidelity motion analysis. In: Proceedings of the 7th Conference on Embedded Networked Sensor Systems, pp. 183–196. ACM, 2009.

  20. Shahram Nourizadeh, Y.-Q.S., Deroussent, C., and Thomesse, J.-P.: A distributed elderly healthcare system. In: Mobihealth, 2009.

  21. Fernández-Luque, F., Zapata, J., Ruiz, R., and Iborra, E.: A wireless sensor network for assisted living at home of elderly people, Bioinspired Applications in Artificial and Natural Computation, 65–74, 2009

  22. Spanoudakis, N., Grabner, B., Kotsiopoulou, C., Lymperopoulou, O., Moser-Siegmeth, V., Pantelopoulos, S., Sakka, P., and Moraitis, P.: A novel architecture and process for ambient assisted living - the HERA approach. In: Information Technology and Applications in Biomedicine (ITAB), pp. 1–4, 2010. https://doi.org/10.1109/ITAB.2010.5687615.

  23. Saponara, S., Donati, M., Bacchillone, T., Fanucci, L., Sanchez-Tato, I., Carmona, C., and Barba, P.: Remote monitoring of vital signs in patients with chronic heart failure: sensor devices and data analysis perspective. In: Sensors Applications Symposium (SAS), pp. 1–6, 2012.

  24. Kim, W., Lim, S., Ahn, J., Nah, J., and Kim, N., Integration of IEEE 1451 and HL7 exchanging information for patients’ sensor data. J. Med. Syst. 34(6):1033–1041, 2010. https://doi.org/10.1007/s10916-009-9322-5.

    Article  PubMed  Google Scholar 

  25. Nourizadeh, S., and Deroussent, C.: Maisons vill’âge®;: smart use of home automation for healthy aging. In: International Conference on Smart Homes and Health Telematics, pp. 271–275. Springer, 2011.

  26. Martín, P., Sánchez, M., Álvarez, L., Alonso, V., and Bajo, J.: Multi-agent system for detecting elderly people falls through mobile devices. In: Ambient Intelligence-Software and Applications, pp. 93–99. Springer, 2011.

  27. Giokas, K., Kouris, I., and Koutsouris, D.: Autonomy, motivation and individual self-management for COPD patients, the amica project. In: Wireless Mobile Communication and Healthcare, Vol. 55 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Springer Berlin Heidelberg, pp. 49-53, 2011.

  28. Mateska, A., Pavloski, M., and Gavrilovska, L.: RFID and sensors enabled in-home elderly care. In: Proceedings of the 34th International Convention, pp. 285–290. MIPRO, 2011.

  29. Bekiaris, A., Mourouzis, A., and Maglaveras, N.: The REMOTE AAL project: remote health and social care for independent living of isolated elderly with chronic conditions. In: Universal Access in Human-Computer Interaction. Context Diversity, Vol. 6767 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 131–140, 2011.

  30. Wang, C., Wang, Q., and Shi, S.: A distributed wireless body area network for medical supervision. In: Instrumentation and Measurement Technology Conference (I2MTC), pp. 2612–2616, 2012. https://doi.org/10.1109/I2MTC.2012.6229260.

  31. Tang, Y., Wang, S., Chen, Y., and Chen, Z.: PPCare: a personal and pervasive health care system for the elderly. In: Ubiquitous Intelligence and Computing, pp. 935–939, 2012.

  32. Belbachir, A., Litzenberger, M., Schraml, S., Hofstatter, M., Bauer, D., Schon, P., Humenberger, M., Sulzbachner, C., Lunden, T., and Merne, M.: CARE: a dynamic stereo vision sensor system for fall detection. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 731–734, 2012. https://doi.org/10.1109/ISCAS.2012.6272141.

  33. Yi He, Y. L., and Bao, S.-D.: Fall detection by built-in tri-accelerometer of smartphone. In: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 184–187, 2012. https://doi.org/10.1109/BHI.2012.6211540.

  34. Ahlrichs, C., Samà, A., Simon, J., Herrlich, S., and Rodrıguez-molinero, A.: Help: optimizing treatment of Parkinson’s disease patients. In: 3Rd International Conference on the Elderly and New Technologies. Castellón, Spain, 2012.

  35. Khawandi, S., Daya, B., and Chauvet, P.: Applying neural network architecture in a multi-sensor monitoring system for the elderly. In: The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences (ADVCOMP), pp. 15–22, 2012.

  36. Bourke, A., Prescher, S., Koehler, F., Cionca, V., Tavares, C., Gomis, S., Garcia, V., and Nelson, J.: Embedded fall and activity monitoring for a wearable ambient assisted living solution for older adults. In: Engineering in Medicine and Biology Society (EMBC), pp. 248–251, 2012. https://doi.org/10.1109/EMBC.2012.6345916.

  37. Selim, B., Iraqi, Y., and Choi, H.-J.: A multi-sensor surveillance system for elderly care. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 502–506, 2013. https://doi.org/10.1109/HealthCom.2013.6720728.

  38. Heikkila, T., Strommer, E., Kivikunnas, S., Jarviluoma, M., Korkalainen, M., Kyllonen, V., Sarjanoja, E., and Peltomaa, I., Low intrusive Ehealth monitoring: human posture and activity level detection with an intelligent furniture network, Wireless Communications. IEEE 20(4):57–63, 2013.

    Google Scholar 

  39. Horta, E., Lopes, I., Rodrigues, J., and Proenca, M.: A mobile health application for falls detection and biofeedback monitoring. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 36–40, 2013. https://doi.org/10.1109/HealthCom.2013.6720634.

  40. Khorakhun, C., and Bhatti, S.: Remote health monitoring using online social media systems. In: 6th Joint IFIP Conference on Wireless and Mobile Networking (WMNC). https://doi.org/10.1109/WMNC.2013.6548953, 2013.

  41. Trigo, J., Eguzkiza, A., Martinez-Espronceda, M., and Serrano, L.: A cardiovascular patient follow-up system using twitter and HL7. In: Computing in Cardiology Conference (CinC), pp. 33–36, 2013.

  42. Seeberg, T., Vedum, J., Sandsund, M., Austad, H., Liverud, A., Vardoy, A., Svagard, I., and Strisland, F.: Development of a wearable multisensor device enabling continuous monitoring of vital signs and activity. In: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 213–218, 2014. https://doi.org/10.1109/BHI.2014.6864342.

  43. Fekr, A., Radecka, K., and Zilic, Z., Design and evaluation of an intelligent remote tidal volume variability monitoring system in e-health applications. IEEE J. Biomed. Health Inform. 19(5):1532–1548, 2015. https://doi.org/10.1109/JBHI.2015.2445783.

    Article  PubMed  Google Scholar 

  44. Yang, Z., Zhou, Q., Lei, L., Zheng, K., and Xiang, W., An IoT-cloud based wearable ecg monitoring system for smart healthcare. J. Med. Syst. 40(12):286, 2016.

    Article  Google Scholar 

  45. Mondol, M. A. S., Emi, I. A., and Stankovic, J. A.: MedRem: an interactive medication reminder and tracking system on wrist devices. In: Wireless Health, pp. 46–53, 2016.

  46. Forkan, A. R. M., Khalil, I., Ibaida, A., and Tari, Z., BDCAm: big data for context-aware monitoring—a personalized knowledge discovery framework for assisted healthcare. IEEE Transactions on Cloud Computing 5(4): 628–641, 2017.

    Article  Google Scholar 

  47. Vora, J., Tanwar, S., Tyagi, S., Kumar, N., and Rodrigues, J. J. P. C.: FAAL: fog computing-based patient monitoring system for ambient assisted living. In: 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–6, 2017. https://doi.org/10.1109/HealthCom.2017.8210825.

  48. Mauldin, T., Canby, M., Metsis, V., Ngu, A., and Rivera, C., Smartfall: a smartwatch-based fall detection system using deep learning. Sensors 18(10):3363, 2018.

    Article  Google Scholar 

  49. Kheirkhahan, M., Nair, S., Davoudi, A., Rashidi, P., Wanigatunga, A. A., Corbett, D. B., Mendoza, T., Manini, T. M., and Ranka, S., A smartwatch-based framework for real-time and online assessment and mobility monitoring. J. Biomed. Inform. 89:29–40, 2019.

    Article  Google Scholar 

  50. Hassan, M. K., El Desouky, A. I., Elghamrawy, S. M., and Sarhan, A. M.: Intelligent hybrid remote patient-monitoring model with cloud-based framework for knowledge discovery, Computers & Electrical Engineering

  51. Acampora, G., Cook, D., Rashidi, P., and Vasilakos, A., A survey on ambient intelligence in healthcare. Proc. IEEE 101(12):2470–2494, 2013.

    Article  Google Scholar 

  52. Alemdar, H., and Ersoy, C., Wireless sensor networks for healthcare: a survey. Comput. Net. 54(15): 2688–2710, 2010.

    Article  Google Scholar 

  53. Eathernet Alliance, Accessed: Dec 1, 2018. https://ethernetalliance.org

  54. Universal Serial Bus (USB), Accessed: Dec 1, 2018. https://www.usb.org

  55. Ko, J., Lu, C., Srivastava, M., Stankovic, J., Terzis, A., and Welsh, M., Wireless sensor networks for healthcare. Proc. IEEE 98(11):1947–1960, 2010.

    Article  Google Scholar 

  56. Bluetooth Low Energy (BLE), Accessed: Dec 1, 2018. https://www.bluetooth.com

  57. ANT+, Accessed: Dec 1, 2018. https://www.thisisant.com

  58. Rafio-Frequency Identification (RFID), Accessed: Dec 1, 2018. https://www.rfidinc.com

  59. RuBee, Accessed: Dec 1, 2018. http://ru-bee.com

  60. IPv6 over Low-Power Wireless Area Networks (6LoWPAN), Accessed: Dec 1, 2018. http://6lowpan.tzi.org

  61. DASH7 Alliance, Accessed: Dec 1, 2018. http://www.dash7-alliance.org

  62. Z-Wave, Accessed: Dec 1, 2018. https://www.z-wave.com

  63. Ultra-Wide Band (UAB), Accessed: Dec 1, 2018. https://www.etsi.org

  64. Near Field Communication (NFC), Accessed: Dec 1, 2018. http://nearfieldcommunication.org

  65. Wan, J., Zou, C., Ullah, S., Lai, C.-F., Zhou, M., and Wang, X., Cloud-enabled wireless body area networks for pervasive healthcare, Network. IEEE 27(5):56–61, 2013. https://doi.org/10.1109/MNET.2013.6616116.

    Article  Google Scholar 

  66. Haescher, M., Matthies, D. J., Srinivasan, K., and Bieber, G.: Mobile assisted living: smartwatch-based fall risk assessment for elderly people. ACM, 2018

  67. Lutze, R., Baldauf, R., and Waldhör, K.: Dehydration prevention and effective support for the elderly by the use of smartwatches. https://doi.org/10.1109/HealthCom.2015.7454534, 2015

  68. Apple Watch Series 4, Accessed: Dec 1, 2018. https://www.apple.com/apple-watch-series-4

  69. Samsung Gear 3, Accessed: Dec 1, 2018. https://www.samsung.com/global/galaxy/gear-s3

  70. BLOCKS Core, Accessed: Dec 1, 2018. https://www.chooseblocks.com

  71. Benmansour, A., Bouchachia, A., and Feham, M., Multioccupant activity recognition in pervasive smart home environments. ACM Comput. Surv. 48(3):34:1–34:36, 2015. https://doi.org/10.1145/2835372.

    Article  Google Scholar 

  72. Rodríguez, N. D., Cuéllar, M. P., Lilius, J., and Calvo-Flores, M. D., A survey on ontologies for human behavior recognition. ACM Comput. Surv. 46(4):43:1–43:33, 2014. https://doi.org/10.1145/2523819.

    Article  Google Scholar 

  73. Intille, S., Larson, K., Tapia, E., Beaudin, J., Kaushik, P., Nawyn, J., and Rockinson, R.: Using a live-in laboratory for ubiquitous computing research. In: Pervasive Computing, Vol. 3968 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 349–365, 2006.

  74. Gama, O., and Simoes, R.: A platform to emulate ambient assisted living environments. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 46–50, 2013. https://doi.org/10.1109/HealthCom.2013.6720636.

  75. Amiri, S., Pourazad, M., Nasiopoulos, P., and Leung, V.: Non-intrusive human activity monitoring in a smart home environment. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 606–610, 2013. https://doi.org/10.1109/HealthCom.2013.6720748.

  76. Schuldt, C., Laptev, I., and Caputo, B.: Recognizing human actions: a local SVM approach. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR), Vol. 3, pp. 32–36, 2004.

  77. Laptev, I., On space-time interest points. Int. J. Comput. Vis. 64(2-3):107–123, 2005. https://doi.org/10.1007/s11263-005-1838-7.

    Article  Google Scholar 

  78. Weinland, D., Ronfard, R., and Boyer, E., Free viewpoint action recognition using motion history volumes. Comput. Vis. Image Underst. 104(23):249–257, 2006.

    Article  Google Scholar 

  79. Noury, N., and Hadidi, T.: Simulation of human activity in a health smart home with HMM. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 125–129, 2013. https://doi.org/10.1109/HealthCom.2013.6720652.

  80. Eddy, S. R., Hidden Markov models. Curr. Opin. Struct. Biol. 6(3):361–365, 1996. https://doi.org/10.1016/S0959-440X(96)80056-X.

    Article  CAS  PubMed  Google Scholar 

  81. Hoppe, F., Plya-like Urns and the Ewens’ sampling formula. J. Math. Biol. 20(1):91–94, 1984. https://doi.org/10.1007/BF00275863.

    Article  Google Scholar 

  82. Faria, J., Lima, B., Boldt Sousa, T., and Martins, A.: A testing and certification methodology for an ambient-assisted living ecosystem. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 585–589, 2013. https://doi.org/10.1109/HealthCom.2013.6720744.

  83. FDA Draft Guidance for Industry and FDA Staff - Design Considerations for Devices Intended for Home Use. Dec. 12, 2012. U.S. Food and Drug Administration, accessed: Dec 1, 2018. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM331681.pdf

  84. Moor, G. D., Sundgren, M., Kalra, D., Schmidt, A., Dugas, M., Claerhout, B., Karakoyun, T., Ohmann, C., Lastic, P.-Y., Ammour, N., Kush, R., Dupont, D., Cuggia, M., Daniel, C., Thienpont, G., and Coorevits, P., Using electronic health records for clinical research: the case of the {EHR4CR} project. J. Biomed. Inform. 53:162–173, 2015. https://doi.org/10.1016/j.jbi.2014.10.006. http://www.sciencedirect.com/science/article/pii/S1532046414002263.

    Article  PubMed  Google Scholar 

  85. Tomar, D., Bhati, J. P., Tomar, P., and Kaur, G.: Migration of healthcare relational database to NoSQL cloud database for healthcare analytics and management. In: Healthcare Data Analytics and Management, pp. 59–87. Elsevier, 2019.

  86. Wang, Y., Kung, L., and Byrd, T. A., Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Chang. 126:3–13, 2018.

    Article  Google Scholar 

  87. Andriopoulou, F., Birkos, K., and Lymberopoulos, D.: P2Care: a dynamic self-organized healthcare network for ubiquitous healthcare environment. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 294–298, 2013. https://doi.org/10.1109/HealthCom.2013.6720688.

  88. Song, E., and Lee, K., Understanding IEEE 1451-networked smart transducer interface standard - What is a smart transducer?, Instrumentation Measurement Magazine. IEEE 11(2):11–17, 2008. https://doi.org/10.1109/MIM.2008.4483728.

    Article  Google Scholar 

  89. Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang, S., and Lemmens, R., New generation sensor web enablement. Sensors 11(3):2652–2699, 2011. https://doi.org/10.3390/s110302652.

    Article  PubMed  Google Scholar 

  90. Jung, M., Park, J. G., Kim, J. H., and Cho, J.: Interoperability between medical devices using near field communication. In: International Conference on Information Science and Applications (ICISA), pp. 1–4, 2013. https://doi.org/10.1109/ICISA.2013.6579328.

  91. I. 11073, IEEE Standard for Health Informatics - Point-Of-Care Medical Device Communication - Part 20101: Application Profile - Base Standard, 2004

  92. Song, E., and Lee, K.: Integration of IEEE smart transducers and OGC-SWE using STWS. In: Sensors Applications Symposium (SAS), pp. 298-303. IEEE, 2009. https://doi.org/10.1109/SAS.2009.4801819.

  93. Health Level Seven (HL7), Accessed: Dec 1, 2018. http://www.hl7.org

  94. Eichelberg, M., Aden, T., Riesmeier, J., Dogac, A., Laleci, G. B., and Survey, A, Analysis of electronic healthcare record standards. ACM Comput. Surv. 37(4):277–315, 2005. https://doi.org/10.1145/1118890.1118891. http://doi.acm.org/10.1145/1118890.1118891.

    Article  Google Scholar 

  95. Martínez-García, A., García-García, J., Escalona, M., and Parra-Calderón, C., Working with the {HL7} metamodel in a model driven engineering context. J. Biomed. Inform. 57:415–424, 2015. https://doi.org/10.1016/j.jbi.2015.09.001. http://www.sciencedirect.com/science/article/pii/S1532046415001938.

    Article  PubMed  Google Scholar 

  96. Universal open platform reference specification for ambient living (UniversAAL), Accessed: Dec 1, 2018. http://universaal.org/index.php/en

  97. Vaportzis, E., Giatsi Clausen, M., and Gow, A. J., Older adults perceptions of technology and barriers to interacting with tablet computers: a focus group study. Front. Psychol. 8:1687, 2017.

    Article  Google Scholar 

  98. Ding, E., Liu, D., Soni, A., Adaramola, O., Han, D., Bashar, S. K., Noh, Y., Chon, K. H., and McManus, D. D.: Impressions of older patients with cardiovascular diseases to smart devices for heart rhythm monitoring. In: 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 270-271. IEEE, 2017.

  99. Yoo, J., Yan, L., Lee, S., Kim, Y., and Yoo, H.-J., A 5.2 mW self-configured wearable body sensor network controller and a 12 w wirelessly powered sensor for a continuous health monitoring system. IEEE J. Solid State Circuits 45(1):178–188, 2010. https://doi.org/10.1109/JSSC.2009.2034440.

    Article  Google Scholar 

  100. Bachmann, C., Ashouei, M., Pop, V., Vidojkovic, M., Groot, H., and Gyselinckx, B., Low-power wireless sensor nodes for ubiquitous long-term biomedical signal monitoring, Communications Magazine. IEEE 50 (1):20–27, 2012. https://doi.org/10.1109/MCOM.2012.6122528.

    Article  Google Scholar 

  101. Mottola, L., and Picco, G. P., Programming wireless sensor networks: fundamental concepts and state of the art. ACM Comput. Surv. 43(3): 19:1–19:51, 2011. https://doi.org/10.1145/1922649.1922656. http://doi.acm.org/10.1145/1922649.1922656.

    Article  Google Scholar 

  102. Ren, H., and Meng, M.-H.: Bioeffects control in wireless biomedical sensor networks. In: IEEE 3rd Annual Communications Society on, Sensor and Ad Hoc Communications and Networks (SECON), Vol. 3, pp. 896–904, 2006. https://doi.org/10.1109/SAHCN.2006.288579.

  103. Camara, C., Peris-Lopez, P., and Tapiador, J. E., Security and privacy issues in implantable medical devices: a comprehensive survey. J. Biomed. Inform. 55:272–289, 2015. https://doi.org/10.1016/j.jbi.2015.04.007. http://www.sciencedirect.com/science/article/pii/S153204641500074X.

    Article  PubMed  Google Scholar 

  104. Gkoulalas-Divanis, A., Loukides, G., and Sun, J., Publishing data from electronic health records while preserving privacy: a survey of algorithms. J. Biomed. Inform. 50:4–19, 2014. Special Issue on Informatics Methods in Medical Privacy. https://doi.org/10.1016/j.jbi.2014.06.002 http://www.sciencedirect.com/science/article/pii/S1532046414001403.

    Article  Google Scholar 

  105. Ondiege, B., Clarke, M., and Mapp, G., Exploring a new security framework for remote patient monitoring devices. Computers 6(1):11, 2017.

    Article  Google Scholar 

  106. Partala, J., Ker’́anen, N., S’́arest’́oniemi, M., H’́am’́al’́ainen, M., Iinatti, J., J’́ams’́a, T., Reponen, J., and Sepp’́anen, T.: Security threats against the transmission chain of a medical health monitoring system. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 243–248, 2013. https://doi.org/10.1109/HealthCom.2013.6720675.

  107. Thota, C., Sundarasekar, R., Manogaran, G., Varatharajan, R., and Priyan, M.: Centralized fog computing security platform for iot and cloud in healthcare system. In: Exploring the Convergence of Big Data and the Internet of Things, IGI Global, pp. 141–154, 2018.

  108. Lee, Y.-D., and Chung, W.-Y., Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring. Sens. Actuators B 140(2):390–395, 2009. https://doi.org/10.1016/j.snb.2009.04.040.

    Article  CAS  Google Scholar 

  109. Li, Z., and Zhang, G.: A physical activities healthcare system based on wireless sensing technology. In: IEEE 13th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pp. 369–376, 2007. https://doi.org/10.1109/RTCSA.2007.10.

  110. Barth, A., Hanson, M., Powell, H., and Lach, J.: TEMPO 3.1: a body area sensor network platform for continuous movement assessment. In: Sixth International Workshop on Wearable and Implantable Body Sensor Networks (BSN), pp. 71–76, 2009. https://doi.org/10.1109/BSN.2009.39.

  111. Schmitt, L., Falck, T., Wartena, F., and Simons, D.: Novel ISO/IEEE 11073 standards for personal telehealth systems interoperability. In: Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability (HCMDSS-MDPnP), pp. 146–148, 2007. https://doi.org/10.1109/HCMDSS-MDPnP.2007.9.

  112. P1752 - Standard for Mobile Health Data, accessed: Dec 1, 2018. https://standards.ieee.org/project/1752.html

  113. Thomas, L., and Capistrant, G.: State Telemedicine Gaps Analysis Coverage & Reimbursement, American Telemedicine Association

  114. Liu, F. , Rijnboutt, E., Routsis, D., Venekamp, N., Fulgencio, H., Rezai, M., and van der Helm, A.: What challenges have to be faced when using the cloud for e-health services?. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 465–470, 2013. https://doi.org/10.1109/HealthCom.2013.6720721.

  115. Kraemer, F. A., Braten, A. E., Tamkittikhun, N., and Palma, D., Fog computing in healthcare—a review and discussion. IEEE Access 5:9206–9222, 2017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoun T. Mardini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mobile & Wireless Health

This research was supported by the Khalifa University-Korea Advanced Institute of Science and Technology Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardini, M.T., Iraqi, Y. & Agoulmine, N. A Survey of Healthcare Monitoring Systems for Chronically Ill Patients and Elderly. J Med Syst 43, 50 (2019). https://doi.org/10.1007/s10916-019-1165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1165-0

Keywords

Navigation