Skip to main content

Advertisement

Log in

Design of a Functional Splint for Rehabilitation of Achilles Tendon Injury Using Advanced Manufacturing (AM) Techniques. Implementation Study

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The use of conventional immobilization splints can cause a lot of mishaps and discomfort in patients. In addition, it is common the generation of muscle, joint and vascular complications arising from the application of classic restraint devices in this phase of treatment. Currently, it is being observed that these problems could be solved with the use of Advanced Manufacturing techniques based on Additive Manufacturing (AM), industrial digitalization and reverse engineering for the realization of individualized immobilization splints. The present study proposes to give these splints a functional character in their design adapting them to a specific pathology, in this case to the partial rupture of Achilles tendon. It also provides a comparison against the use of conventional plaster splints as an improvement factor for their definitive implementation considering the initial sanitary use for which they were designed. In this way, there have been created therapeutic windows that allow the application of rehabilitation techniques, being the treatment that would be carried out developed in parallel. The designed splint has been made in FilaFlex and Polycarbonate, materials that guarantee comfort and resistance at the same time. In addition, an optimization in terms of material has been executed, lightening the splint and reducing environmental impact and manufacturing costs. As a result of this preliminary study, a prototype on scale printed in PLA has been generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3.
Figure 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. D’Amato, R., Calvo, R., and Gómez, E., Sensitivity study of the morphometric fitting on the pressure field inside ankle joints. Case Stud Mech Syst Signal Process 1:8–14, 2015. https://doi.org/10.1016/j.csmssp.2015.04.001.

    Article  Google Scholar 

  2. D’Amato, R., Calvo, R., Ruggiero, A., and Gómez, E., Measurement capabilities for ball bearing wear assessment. Procedia Manuf 13:647–654, 2017. https://doi.org/10.1016/j.promfg.2017.09.136.

    Article  Google Scholar 

  3. Ruggiero, A., D’Amato, R., and Gómez, E., Experimental analysis of tribological behavior of UHMWPE against AISI420C and against TiAl6V4 alloy under dry and lubricated conditions. Tribol Int 92:154–161, 2015. https://doi.org/10.1016/j.triboint.2015.06.005.

    Article  CAS  Google Scholar 

  4. Ruggiero, A., D’Amato, R., Gómez, E., and Merola, M., Experimental comparison on tribological pairs UHMWPE/TIAL6V4 alloy, UHMWPE/AISI316L austenitic stainless and UHMWPE/AL2O3ceramic, under dry and lubricated conditions. Tribol Int 96:349–360, 2016. https://doi.org/10.1016/j.triboint.2015.12.041.

    Article  CAS  Google Scholar 

  5. Valášek, P., D’Amato, R., Müller, M., and Ruggiero, A., Musa textilis cellulose Fibres in biocomposites – An investigation of mechanical properties and microstructure. BioResources 13:3177–3194, 2018.

    Article  Google Scholar 

  6. Blaya, F., Pedro, P. S., Silva, J. L., D’Amato, R., Heras, E. S., and Juanes, J. A., Design of an Orthopedic Product by using additive manufacturing technology: The arm splint. J Med Syst:42, 2018. https://doi.org/10.1007/s10916-018-0909-6.

  7. Affatato, S., Ruggiero, A., De Mattia, J. S., and Taddei, P., Does metal transfer affect the tribological behaviour of femoral heads? Roughness and phase transformation analyses on retrieved zirconia and biolox® Delta composites. Compos Part B Eng 92:290–298, 2016. https://doi.org/10.1016/j.compositesb.2016.02.020.

    Article  CAS  Google Scholar 

  8. Kelly S, Paterson A, Bibb RJ (2015) A review of wrist splint designs for additive manufacture. Rapid Des Prototyp Manuf Conf

  9. Lozano, M. T. U, D’Amato, R., Ruggiero, A., Manzoor, S., Haro, F. B., Méndez, J. A. J,. A study evaluating the level of satisfaction of the students of health sciences about the use of 3D printed bone models. In: Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality - TEEM’18. ACM Press, New York, New York, USA, pp 368–372, 2018

  10. García, N. M., Blaya, F., Urquijo, E. L., Haro, F. B., Soriano Heras, E., D’Amato, R., García, N. M., Blaya, F., Urquijo, E. L., Soriano Heras, E., D’Amato, R.,Study, Design and Prototyping of Oral Appliances to Treat Obstructive Sleep Apnea. Proc Sixth Int Conf Technol Ecosyst Enhancing Multicult - TEEM’18 416–421, 2018. doi: https://doi.org/10.1145/3284179.3284250.

  11. Evill, J. Cortex. http://www.evilldesign.com/cortex. Accessed 13 Jun 2018

  12. Emelogu, A., Marufuzzaman, M., Thompson, S. M., Shamsaei, N., and Bian, L., Additive manufacturing of biomedical implants: A feasibility assessment via supply-chain cost analysis. Addit Manuf 11:97–113, 2016. https://doi.org/10.1016/J.ADDMA.2016.04.006.

    Article  Google Scholar 

  13. Haro, F. B., de Agustín del Burgo, J. M., D’Amato, R., Marcos, M. I., Heras, E. S., Alonso, J. M. G., Monitoring of the additive manufacturing process for the use of biomaterials in medical field. In: Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality - TEEM’18. ACM Press, New York, New York, USA, pp 428–432, 2018.

  14. Paterson, A. M., Bibb, R., Campbell, R. I., and Bingham, G., Comparing additive manufacturing technologies for customised wrist splints. Rapid Prototyp J 21:230–243, 2015. https://doi.org/10.1108/RPJ-10-2013-0099.

    Article  Google Scholar 

  15. Viel, E., La marcha humana, la carrera y el salto: Biomecánica, exploraciones, normas y alteraciones. 59–60, 2002.

  16. Kapandji, A., Fisiología Articular, Tomo 2: Miembro Inferior, 6a Edición. Editorial Medica Panamericana S.A., 2012.

  17. Wren, T. A., Yerby, S. A., Beaupré, G. S., and Carter, D. R., Mechanical properties of the human achilles tendon. Clin Biomech 16:245–251, 2001. https://doi.org/10.1016/S0268-0033(00)00089-9.

    Article  CAS  Google Scholar 

  18. Kannus, P., Structure of the tendon connective tissue. Scand J Med Sci Sport 10:312–320, 2000. https://doi.org/10.1034/j.1600-0838.2000.010006312.x.

    Article  CAS  Google Scholar 

  19. Claudia Astudillo, A., Indicaciones del ultrasonido musculoesquelético diagnóstico. Rev Médica Clínica Las Condes 24:88–97, 2013. https://doi.org/10.1016/S0716-8640(13)70133-0.

    Article  Google Scholar 

  20. Busquet, L., Urrits, C. (1994) Las cadenas musculares. Paidotribo.

  21. Elvira JLL. V-GFJ. MM. GJA. Motricidad : European Journal of Human Movement. Asociación Española de Ciencias del Deporte, 2008.

  22. Zaragoza-Velasco, K., Fernández-Tapia, S. Ligamentos y tendones del tobillo: anatomía y afecciones más frecuentes analizadas mediante resonancia magnética. In: Anales de radiología México. pp 81–94, 2013.

  23. Romero-Barajas, A., Ventura-Ríos, L., Pineda, C., and Hernández-Diaz, C., Tendón de Aquiles y su Estudio Ultrasonográfi-co; Más Allá de sus Alteraciones Inflamatorias. Rev chil Reum 30:122–127, 2014.

    Google Scholar 

  24. Lantto, I., Heikkinen, J., Flinkkilä, T., Ohtonen, P., and Leppilahti, J., Epidemiology of Achilles tendon ruptures: Increasing incidence over a 33-year period. Scand J Med Sci Sports 25:e133–e138, 2015. https://doi.org/10.1111/sms.12253.

    Article  CAS  PubMed  Google Scholar 

  25. Heim, U., Baltensweiler, J., Guía de traumatología, Segunda ed. Thieme, Barcelona, 1988..

  26. Anatomy Learning - 3D Atlas.

  27. Muñoz, A., Pelliccioni, O., C M-K Diseño Y Construcción de un Prototipo dE Bitutor Largo de Tipo Kafo Termoconformado.

  28. Jose, O., Monrroy, P., Candal, M. V., Mechanical evaluation of a designed plastic modular system of knee- ankle-foot orthotics for children Congreso Internacional de Métodos Numéricos en Ingeniería y Ciencias Aplicadas CIMENICS 2016 View project Computational Biofluid Dynamic of a mechanical, 2016.

  29. EB Projecte Final d’Estudis Màster en Enginyeria Biomèdica Análisis Dinámico de las Fuerzas de Contacto Ortesis- Pierna Mediante un Modelo Biomecánico Tridimensional, 2014.

  30. Modulo Medical 4. http://www.fisioline.com/es/estimuladores-neuromusculares/modulo-medical-4.html. Accessed 19 Oct 2018

  31. Una Acción Focalizada Profundidad De Alta Potencia PE ONDAS DE PRESIÓN DE ALTA FRECUENCIA.

  32. F I S I O F I E L D M I D D L E.

  33. Heras, E. S., D’Amato, R., Marcos, M. I., de Agustín del Burgo, J. M., Haro, F. B., Alonso, J. M. G,. Monitoring of the additive manufacturing process for the use of biomaterials in medical field. ACM, pp 428–432, 2018.

  34. LUMIX ® Plus y LUMIX ®.

  35. Rodríguez Martín, J. M., Electroterapia en fisioterapia. Editorial Médica Panamericana, 2014.

Download references

Acknowledgments

The authors gratefully acknowledge the company Trimédica S.L. (http://www.trimedica.es/) and the manufacturer of electromedical devices fisioline (http://www.fisioline.com/es/home-medical-es.html) for their assignment of all the required electromedical equipment in the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto D’Amato.

Ethics declarations

Conflict of interest

Fernando Blaya Haro declares that he has no conflict of interest. Pilar San Pedro declares that he has no conflict of interest. Alonso Blaya San Pedro declares that he has no conflict of interest. Julia Lopez-Silva declares that he has no conflict of interest. Juan A. Juanes declares that he has no conflict of interest. Roberto D’Amato declares that he has no conflict of interest. Manuel Islán declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Education & Training

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaya, F., Pedro, P.S., Pedro, A.B.S. et al. Design of a Functional Splint for Rehabilitation of Achilles Tendon Injury Using Advanced Manufacturing (AM) Techniques. Implementation Study. J Med Syst 43, 122 (2019). https://doi.org/10.1007/s10916-019-1247-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1247-z

Keywords

Navigation