Skip to main content
Log in

An Appraisal of Nodule Diagnosis for Lung Cancer in CT Images

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

As “the second eyes” of radiologists, computer-aided diagnosis systems play a significant role in nodule detection and diagnosis for lung cancer. In this paper, we aim to provide a systematic survey of state-of-the-art techniques (both traditional techniques and deep learning techniques) for nodule diagnosis from computed tomography images. This review first introduces the current progress and the popular structure used for nodule diagnosis. In particular, we provide a detailed overview of the five major stages in the computer-aided diagnosis systems: data acquisition, nodule segmentation, feature extraction, feature selection and nodule classification. Second, we provide a detailed report of the selected works and make a comprehensive comparison between selected works. The selected papers are from the IEEE Xplore, Science Direct, PubMed, and Web of Science databases up to December 2018. Third, we discuss and summarize the better techniques used in nodule diagnosis and indicate the existing future challenges in this field, such as improving the area under the receiver operating characteristic curve and accuracy, developing new deep learning-based diagnosis techniques, building efficient feature sets (fusing traditional features and deep features), developing high-quality labeled databases with malignant and benign nodules and promoting the cooperation between medical organizations and academic institutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., and Jemal, A., Cancer statistics, 2018. Ca-Cancer J Clin 60(5):277–300, 2018.

    Google Scholar 

  2. Siegel, R., Naishadham, D., and Jemal, A., Cancer statistics, 2013. Ca-Cancer J Clin, 2013.

  3. McGuire, S., World cancer report 2014. World Health Organization 7(2):418–419, 2015.

    Google Scholar 

  4. Henschke, C. I., Mccauley, D. I., Yankelevitz, D. F., Naidich, D. P., Mcguinness, G., Miettinen, O. S., Libby, D. M., Pasmantier, M. W., Koizumi, J., and Altorki, N. K., Early Lung Cancer Action Project: overall design and findings from baseline screening. Cancer-Am Cancer Soc 354(9173):2474–2482, 1999.

    Google Scholar 

  5. Gibaldi, A., Barone, D., Gavelli, G., Malavasi, S., and Bevilacqua, A., Effects of Guided Random Sampling of TCCs on Blood Flow Values in CT Perfusion Studies of Lung Tumors. Acad. Radiol. 22(1):58–69, 2015.

    PubMed  Google Scholar 

  6. Ng, Q. S., and Goh, V., Angiogenesis in non-small cell lung cancer: imaging with perfusion computed tomography. J Thorac Inag 25(2):142, 2010.

    Google Scholar 

  7. Aberle, D. R., Adams, A. M., Berg, C. D., Black, W. C., Clapp, J. D., Fagerstrom, R. M., Gareen, I. F., Gatsonis, C., Marcus, P. M., and Sicks, J. D., Reduced lung-cancer mortality with low-dose computed tomographic screening. New Engl J Med 365(5):395–409, 2011.

    PubMed  Google Scholar 

  8. Gould, M. K., Maclean, C. C., Kuschner, W. G., Rydzak, C. E., and Owens, D. K., Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. Jama-J Am Med Assoc 285(7):914–924, 2001.

    CAS  Google Scholar 

  9. Doi, K., Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4):198–211, 2007.

    PubMed  PubMed Central  Google Scholar 

  10. Ma, Z., Tavares, J. M. R. S., and Jorge, R. M. N., A review on the current segmentation algorithms for medical images. In: 1st International Conference on Imaging Theory and Applications (IMAGAPP), INSTICC Press, Lisbon, 135–140, 2015.

  11. Ma, Z., Tavares, J. M. R. S., Jorge, R. N., and Mascarenhas, T., A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput Method Biomec 13(2):235–246, 2010.

    Google Scholar 

  12. Zhang, J. J., Xia, Y., Cui, H. F., and Zhang, Y. N., Pulmonary nodule detection in medical images: A survey. Biomed Signal Proces 43:138–147, 2018.

    Google Scholar 

  13. Zhang, G. B., Jiang, S., Yang, Z. Y., Gong, L., Ma, X. D., Zhou, Z. Y., Bao, C., and Liu, Q., Automatic nodule detection for lung cancer in CT images: A review. Comput. Biol. Med. 103:287–300, 2018.

    PubMed  Google Scholar 

  14. El-Regaily, S. A., Salem, M. A., Aziz, M. H. A., and Roushdy, M. I., Survey of Computer Aided Detection Systems for Lung Cancer in Computed Tomography. Curr Med Imaging Rev 14(1):3–18, 2018.

    Google Scholar 

  15. Rehman, M. Z. U., Javaid, M., Shah, S. I. A., Gilani, S. O., Jamil, M., and Butt, S. I., An appraisal of nodules detection techniques for lung cancer in CT images. Biomed Signal Proces 41:140–151, 2018.

    Google Scholar 

  16. Naqi, S. M., and Sharif, M., Recent Developments in Computer Aided Diagnosis for Lung Nodule Detection from CT images: A Review. Curr Med Imaging Rev 13(1):3–19, 2017.

    Google Scholar 

  17. Valente, I. R. S., Cortez, P. C., Neto, E. C., Soares, J. M., Albuquerque, V. H. C. D., and Tavares, J. M. R. S., Automatic 3D pulmonary nodule detection in CT images: A survey. Comput. Methods Prog. Biomed. 124(C):91–107, 2016.

    Google Scholar 

  18. Lee, S. L. A., Kouzani, A. Z., and Hu, E. J., Automated detection of lung nodules in computed tomography images: a review. Mach. Vis. Appl. 23(1):151–163, 2012.

    Google Scholar 

  19. El-Baz, A., Elnakib, A., Abou, E.-G. M., Gimel'Farb, G., Falk, R., and Farag, A., Automatic Detection of 2D and 3D Lung Nodules in Chest Spiral CT Scans. International Journal of Biomedical Imaging 2013(1):517632, 2013.

    PubMed  PubMed Central  Google Scholar 

  20. Eadie, L. H., Paul, T., and Gibson, A. P., A systematic review of computer-assisted diagnosis in diagnostic cancer imaging. Eur. J. Radiol. 81(1):e70–e76, 2012.

    PubMed  Google Scholar 

  21. Firmino, M., Morais, A. H., Mendoça, R. M., Dantas, M. R., Hekis, H. R., and Valentim, R., Computer-aided detection system for lung cancer in computed tomography scans: Review and future prospects. Biomed. Eng. Online 13(1):41, 2014.

    PubMed  PubMed Central  Google Scholar 

  22. Yang, Y. X., Feng, X. Y., Chi, W. H., Li, Z. Y., Duan, W. Z., Liu, H. P., Liang, W. H., Wang, W., Chen, P., He, J. X., and Liu, B., Deep learning aided decision support for pulmonary nodules diagnosing: a review. J Thorac Dis 10:S867–S875, 2018.

    PubMed  PubMed Central  Google Scholar 

  23. Hu, Z., Tang, J., Wang, Z., Kai, Z., Lin, Z., and Sun, Q., Deep Learning for Image-based Cancer Detection and Diagnosis — A Survey. Pattern Recogn. 83:134–149, 2018.

    Google Scholar 

  24. Paulraj, T., and Chellliah, K. S. V., Computer-Aided Diagnosis of lung cancer in Computed Tomography scans: A Review. Curr Med Imaging Rev 14(3):374–388, 2018.

    Google Scholar 

  25. Dean, J. C., and Ilvento, C. C., Improved cancer detection using computer-aided detection with diagnostic and screening mammography: prospective study of 104 cancers. Breast Diseases A Year Book Quarterly 187(1):20–28, 2006.

    Google Scholar 

  26. Singh, S., Maxwell, J., Baker, J. A., and Nicholas, J. L., Computer -aided classification of breast masses: performance and interobserver variability of expert radiologists versus residents. International Journal of Medical Radiology 258(1):73–80, 2011.

    Google Scholar 

  27. Berkman, S., Heang-Ping, C., Roubidoux, M. A., Hadjiiski, L. M., Helvie, M. A., Chintana, P., Janet, B., Nees, A. V., and Caroline, B., Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Radiology 242(3):716–724, 2007.

    Google Scholar 

  28. Giger, M. L., Karssemeijer, N., and Schnabel, J. A., Breast Image Analysis for Risk Assessment, Detection, Diagnosis, and Treatment of Cancer. Annu. Rev. Biomed. Eng. 15(1):327–357, 2013.

    CAS  PubMed  Google Scholar 

  29. Reeves, A. P., Biancardi, A. M., Apanasovich, T. V. et al., The Lung Image Database Consortium (LIDC): A comparison of different size metrics for pulmonary nodule measurements. Acad. Radiol. 14(12):1475–1485, 2007.

    PubMed  PubMed Central  Google Scholar 

  30. Armato, S. G., Geoffrey, M. L., Mcnitt-Gray, M. F., Meyer, C. R., David, Y., Aberle, D. R., Henschke, C. I., Hoffman, E. A., Kazerooni, E. A., and Heber, M. M., Lung image database consortium: developing a resource for the medical imaging research community. Radiology 232(3):739–748, 2004.

    PubMed  Google Scholar 

  31. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., and Pringle, M., The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. J. Digit. Imaging 26(6):1045–1057, 2013.

    PubMed  PubMed Central  Google Scholar 

  32. Messay, T., Hardie, R. C., and Tuinstra, T. R., Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset. Med. Image Anal. 22(1):48–62, 2015.

    PubMed  Google Scholar 

  33. Setio, A. A. A., Traverso, A., de Bel, T. et al., Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42:1–13, 2017.

    PubMed  Google Scholar 

  34. Henschke, C. I., Yankelevitz, D. F., Libby, D. M., Pasmantier, M. W., Smith, J. P., and Miettinen, O. S., Survival of patients with stage I lung cancer detected on CT screening. New Engl J Med 355(17):1763–1771, 2006.

    PubMed  Google Scholar 

  35. Rowena, Y., Henschke, C. I., Yankelevitz, D. F., and Smith, J. P., CT screening for lung cancer: alternative definitions of positive test result based on the national lung screening trial and international early lung cancer action program databases. Radiology 273(2):591–596, 2014.

    Google Scholar 

  36. Carrilloa, M. C., and Katz, R. G., Maximizing the Alzheimer's Disease Neuroimaging Initiative II. Alzheimers & Dementia the Journal of the Alzheimers Association 5(3):271–275, 2009.

    Google Scholar 

  37. Weisheng, W., Jiawei, L., Xuedong, Y., and Hongli, L., Data analysis of the Lung Imaging Database Consortium and Image Database Resource Initiative. Acad. Radiol. 22(4):488–495, 2015.

    Google Scholar 

  38. Armato, S. G., McLennan, G., Bidaut, L. et al., The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans. Med. Phys. 38(2):915–931, 2011.

    PubMed  PubMed Central  Google Scholar 

  39. Filho, A. O. D. C., Silva, A. C., Paiva, A. C. D., Nunes, R. A., and Gattass, M., Computer-Aided Diagnosis of Lung Nodules in Computed Tomography by Using Phylogenetic Diversity, Genetic Algorithm, and SVM. J. Digit. Imaging 30(6):812–822, 2017.

    Google Scholar 

  40. Costa, R. W. D. S., Silva, G. L. F. D., Filho, A. O. D. C., Silva, A. C., Paiva, A. C. D., and Gattass, M., Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance. Med. Biol. Eng. Comput. 56(11):2125–2136, 2018.

    Google Scholar 

  41. Kumar, D., Wong, A., and Clausi, D. A., Lung Nodule Classification Using Deep Features in CT Images. Conference on Computer & Robot Vision:133–138, 2015.

  42. Wu, P., Xia, K., and Yu, H., Relevance Vector Machine Based Pulmonary Nodule Classification. J Med Imag Health In 6(1):163–169, 2016.

    Google Scholar 

  43. Akram, S., Javed, Y., Akram, U., Qamar, U., and Hassan, A., Pulmonary Nodules Detection and Classification Using Hybrid Features from Computerized Tomographic Images. J Med Imag Health In 6(1):252–259, 2016.

    Google Scholar 

  44. Akram, S., Javed, M. Y., Hussain, A., Riaz, F., and Akram, M. U., Intensity-based statistical features for classification of lungs CT scan nodules using artificial intelligence techniques. J Exp Theor Artif In 27(6):737–751, 2015.

    Google Scholar 

  45. Filho, A. O. D. C., Silva, A. C. E., Paiva, A. C. D., Nunes, R. A., and Gattass, M., Classification of patterns of benignity and malignancy based on CT using topology-based phylogenetic diversity index and convolutional neural network. Pattern Recogn. 81:200–212, 2018.

    Google Scholar 

  46. Filho, A. O. D. C., Silva, A. C., Paiva, A. C. D., Nunes, R. A., and Gattass, M., Computer-aided diagnosis system for lung nodules based on computed tomography using shape analysis, a genetic algorithm, and SVM. Med. Biol. Eng. Comput. 55(8):1129–1146, 2017.

    Google Scholar 

  47. Sweetlin, J. D., Nehemiah, H. K., and Kannan, A., Computer aided diagnosis of pulmonary hamartoma from CT scan images using ant colony optimization based feature selection. Alexandria Engineering Journal 57(3):1557–1567, 2017.

    Google Scholar 

  48. Firmino, M., Angelo, G., Morais, H., Dantas, M. R., and Valentim, R., Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy. Biomed. Eng. Online 15(1):2, 2016.

    PubMed  PubMed Central  Google Scholar 

  49. Orozco, H. M., Villegas, O. O. V., Sánchez, V. G. C., Domínguez, H. D. J. O., and Alfaro, M. D. J. N., Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Biomed. Eng. Online 14(1):9, 2015.

    Google Scholar 

  50. Li, X. X., Li, B., Tian, L. F., and Zhang, L., Automatic benign and malignant classification of pulmonary nodules in thoracic computed tomography based on RF algorithm. IET Image Process. 12(7):1253–1264, 2018.

    Google Scholar 

  51. Gong, J., Liu, J. Y., Sun, X. W., Zheng, B., and Nie, S. D., Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules. Phys. Med. Biol. 63(3):035036, 2018.

    PubMed  Google Scholar 

  52. Dhara, A. K., Mukhopadhyay, S., Dutta, A., Garg, M., and Khandelwal, N., A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images. J. Digit. Imaging 29(4):466–475, 2016.

    PubMed  PubMed Central  Google Scholar 

  53. Xie, Y. T., Zhang, J. P., Xia, Y., Fulham, M., and Zhang, Y. N., Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT. Inform Fusion 42:102–110, 2018.

    Google Scholar 

  54. Cataldo, S. D., Bottino, A., Islam, I. U., Vieira, T. F., and Ficarra, E., Subclass Discriminant Analysis of morphological and textural features for HEp-2 staining pattern classification. Pattern Recogn. 47(7):2389–2399, 2014.

    Google Scholar 

  55. Shen, W., Zhou, M., Yang, F., Yu, D., Dong, D., Yang, C., Zang, Y., and Tian, J., Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification. Pattern Recogn. 61(61):663–673, 2017.

    Google Scholar 

  56. Tajbakhsh, N., and Suzuki, K., Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification MTANNs vs. CNNs. Pattern Recogn. 63:476–486, 2017.

    Google Scholar 

  57. Silva, G. L. F. D., Neto, O. P. D. S., Silva, A. C., Paiva, A. C. D., and Gattass, M., Lung nodules diagnosis based on evolutionary convolutional neural network. Multimed. Tools Appl. (2):1–17, 2017.

  58. Sun, W., Zheng, B., and Wei, Q., Computer aided lung cancer diagnosis with deep learning algorithms. Medical Imaging: Computer-Aided Diagnosis, 2015.

  59. Cheng, J. Z., Ni, D., Chou, Y. H., Qin, J., Tiu, C. M., Chang, Y. C., Huang, C. S., Shen, D., and Chen, C. M., Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Sci Rep-UK 6:24454, 2016.

    CAS  Google Scholar 

  60. Hua, K. L., Hsu, C. H., Hidayati, S. C., Cheng, W. H., and Chen, Y. J., Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Oncotargets Ther 8:2015, 2015-2022.

    CAS  Google Scholar 

  61. Tu, X., Xie, M., Gao, J., Ma, Z., Chen, D., Wang, Q., Finlayson, S. G., Ou, Y., and Cheng, J. Z., Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules in CT Images with. Convolutional Neural Network. Sci Rep-UK 7(1):8533, 2017.

    Google Scholar 

  62. Sun, W., Zheng, B., and Qian, W., Automatic Feature Learning Using Multichannel ROI Based on Deep Structured Algorithms for Computerized Lung Cancer Diagnosis. Comput. Biol. Med. 89:530–539, 2017.

    PubMed  Google Scholar 

  63. Chen, M., Shi, X. B., Zhang, Y., Wu, D., and Mohsen, G., Deep Features Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network. IEEE Transactions on Big Data PP(99):1, 2017.

    Google Scholar 

  64. Yuan, J. J., Liu, X. L., Hou, F., Qin, H., and Hao, A. M., Hybrid-feature-guided lung nodule type classification on CT images. Comput. Graph. 70:288–299, 2017.

    Google Scholar 

  65. Ciompi, F., Chung, K., Riel, S. J. V., Setio, A. A. A., Gerke, P. K., Jacobs, C., Scholten, E. T., Schaeferprokop, C., Wille, M. M. W., and Marchianò, A., Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep-UK 7:46479, 2016.

    Google Scholar 

  66. Zhu, W., DeepLung: 3D Deep Convolutional Nets for Automated Pulmonary Nodule Detection and Classification, 2017.

  67. Zhu, W., Liu, C., Wei, F., and Xie, X., DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification. In: IEEE Winter Conf. on Applications of Computer Vision (WACV2018). pp 673–681, 2018.

  68. Liao, F., Ming, L., Zhe, L., Hu, X., and Song, S., Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network, 2017.

  69. Wang, H. F., Zhao, T. T., Li, L. C., Pan, H. X., Liu, W. Q., Gao, H. Q., Han, F. F., Wang, Y. H., Qi, Y. F., and Liang, Z. R., A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation. J X-Ray Sci Technol 26(2):171–187, 2018.

    Google Scholar 

  70. Zhao, X., Liu, L., Qi, S., Teng, Y., Li, J., and Wei, Q., Agile convolutional neural network for pulmonary nodule classification using CT images. Int J Comput Ass Rad 13(4):585–595, 2018.

    Google Scholar 

  71. Kaya, A., Cascaded Classifiers and Stacking Methods for Classification of Pulmonary Nodule Characteristics. Comput. Methods Prog. Biomed. 166:77–89, 2018.

    Google Scholar 

  72. Liu, Y., Hao, P., Zhang, P., Xu, X., Wu, J., and Chen, W., Dense Convolutional Binary-Tree Networks for Lung Nodule Classification. IEEE Access 6:49080–49088, 2018.

    Google Scholar 

  73. Wang, Z., Xin, J., Sun, P., Lin, Z., Yao, Y., and Gao, X., Improved Lung Nodule Diagnosis Accuracy Using Lung CT Images With Uncertain Class. Comput. Methods Prog. Biomed. 162:197–209, 2018.

    Google Scholar 

  74. Nibali, A., He, Z., and Wollersheim, D., Pulmonary nodule classification with deep residual networks. Int J Comput Ass Rad 12(10):1799–1808, 2017.

    Google Scholar 

  75. Liu, K., and Kang, G., 3D multi-view convolutional neural networks for lung nodule classification. PLoS One 12(1):12–22, 2017.

    Google Scholar 

  76. Zhang, G., 3D Spatial Pyramid Dilated Network for Pulmonary Nodule Classification. Symmetry-Basel. 10(9), 2018.

    CAS  Google Scholar 

  77. Yan, Q., Lei, G., Xin, Z., Zhang, X., and Tang, X., Pulmonary nodule diagnosis using dual-modal supervised autoencoder based on extreme learning machine. Expert. Syst. 34(6):e12224, 2017.

    Google Scholar 

  78. Jung, H., Kim, B., Lee, I., Lee, J., and Kang, J., Classification of lung nodules in CT scans using three-dimensional deep convolutional neural networks with a checkpoint ensemble method. BMC Med. Imaging 18, 2018.

  79. Nishio, M., Sugiyama, O., Yakami, M., Ueno, S., Kubo, T., Kuroda, T., and Togashi, K., Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS One 13(7):e0200721, 2018.

    PubMed  PubMed Central  Google Scholar 

  80. Liu, S., Xie, Y., Jirapatnakul, A., and Reeves, A. P., Pulmonary nodule classification in lung cancer screening with three-dimensional convolutional neural networks. Journal of Medical Imaging 4(4):041308, 2017.

    PubMed  PubMed Central  Google Scholar 

  81. Wei, G. H., Ma, H., Qian, W., Han, F. F., Jiang, H. Y., Qi, S. L., and Qiu, M., Lung nodule classification using local kernel regression models with out-of-sample extension. Biomed Signal Proces 40:1–9, 2018.

    CAS  Google Scholar 

  82. Farag, A. A., Ali, A., Elshazly, S., and Farag, A. A., Feature fusion for lung nodule classification. Int J Comput Ass Rad 12(10):1809–1818, 2017.

    Google Scholar 

  83. Dilger, S. K., Judisch, A., Uthoff, J., Hammond, E., Newell, J. D., and Sieren, J. C., Improved pulmonary nodule classification utilizing lung parenchyma texture features. Medical Imaging: Computer-Aided Diagnosis, 2015.

  84. Kaya, A., and Can, A. B., A weighted rule based method for predicting malignancy of pulmonary nodules by nodule characteristics. J. Biomed. Inform. 56(C):69–79, 2015.

    PubMed  Google Scholar 

  85. Chen, C. H., Chang, C. K., Tu, C. Y., Liao, W. C., Wu, B. R., Chou, K. T., Chiou, Y. R., Yang, S. N., Zhang, G., and Huang, T. C., Radiomic features analysis in computed tomography images of lung nodule classification. PLoS One 13(2):e0192002, 2018.

    PubMed  PubMed Central  Google Scholar 

  86. Reeves, A. P., Xie, Y., and Jirapatnakul, A., Automated pulmonary nodule CT image characterization in lung cancer screening. Int J Comput Ass Rad 11(1):1–16, 2015.

    Google Scholar 

  87. Sun, W., Xia, H., Tseng, T. L., Zhang, J., and Wei, Q., Computerized lung cancer malignancy level analysis using 3D texture features. Medical Imaging: Computer-aided Diagnosis, 2016.

  88. Ferreira, J. R., and Oliveira, M. C., Characterization of Pulmonary Nodules Based on Features of Margin Sharpness and Texture. J. Digit. Imaging:1–13, 2017.

  89. Nishio, M., Nishizawa, M., Sugiyama, O., Kojima, R., Yakami, M., Kuroda, T., and Togashi, K., Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization. PLoS One 13(4):e0195875, 2017.

    Google Scholar 

  90. Hancock, M. C., and Magnan, J. F., Lung nodule malignancy classification using only radiologist-quantified image features as inputs to statistical learning algorithms: probing the Lung Image Database Consortium dataset with two statistical learning methods. J Med Imaging 3(4):044504, 2016.

    Google Scholar 

  91. Mao, K. M., and Deng, Z. F., Lung Nodule Image Classification Based on Local Difference Pattern and Combined Classifier. Comput Math Method M, 2016.

  92. Hawkins, S. H., Korecki, J. N., Balagurunathan, Y., Gu, Y., Kumar, V., Basu, S., Hall, L. O., Goldgof, D. B., Gatenby, R. A., and Gillies, R. J., Predicting Outcomes of Nonsmall Cell Lung Cancer Using CT Image Features. IEEE Access 2:1418–1426, 2014.

    Google Scholar 

  93. Li, Q., and Doi, K., Reduction of bias and variance for evaluation of computer-aided diagnostic schemes. Med. Phys. 33(4):868–875, 2006.

    PubMed  Google Scholar 

  94. He, K. M., Zhang, X. Y., Ren S. Q., Sun, J., Deep residual learning for image recognition. In CVPR: 770–778, 2016.

  95. Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q., Densely connected convolutional networks. In CVPR 2261–2269, 2017.

  96. Krizhevsky, A., Sutskever, I., and Hinton, G. E., ImageNet Classification with Deep Convolutional Neural Networks. International Conference on Neural Information Processing Systems, 2012.

  97. Padma, A., and Giridharan, N., Performance comparison of texture feature analysis methods using PNN classifier for segmentation and classification of brain CT images: Performance Comparison of Texture Feature Analysis Methods Using PNN Classifier for Segmentation and Classification of B. Int. J. Imaging Syst. Technol. 26(2):97–105, 2016.

    Google Scholar 

  98. Amato, F., Mazzocca, N., Moscato, F., and Vivenzio, E., Multilayer Perceptron: An Intelligent Model for Classification and Intrusion Detection. International Conference on Advanced Information Networking & Applications Workshops, 2017.

  99. Sindhumol, S., Kumar, A., and Balakrishnan, K., Spectral clustering independent component analysis for tissue classification from brain MRI. Biomed Signal Proces 8(6):667–674, 2013.

    Google Scholar 

  100. Feiping, N., Zinan, Z., Tsang, I. W., Dong, X., and Changshui, Z., Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans. Neural Netw. 22(11):1796–1808, 2011.

    Google Scholar 

  101. de Carvalho, A. O., de Sampaio, W. B., Silva, A. C., de Paivaa, A. C., Nunes, R. A., and Gattass, M., Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index. Artif. Intell. Med. 60(3):165–177, 2014.

    Google Scholar 

  102. Ohtsu, N., A Threshold Selection Method from Gray-Level Histograms. IEEE T Syst Man Cy-S 9(1):62–66, 2007.

    Google Scholar 

  103. Eberhart R, Kennedy J, A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol. 1, pp. 39–43. New York, 1995. https://doi.org/10.1109/MHS.1995.494215

  104. Lecun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D., Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1(4):541–551, 2014.

    Google Scholar 

  105. Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based learning applied to document recognition. P IEEE 86(11):2278–2324, 1998.

    Google Scholar 

  106. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., and Montreal, U., Greedy layer-wise training of deep networks. Adv. Neural Inf. Proces. Syst. 19:153–160, 2007.

    Google Scholar 

  107. Coates A, Lee H, and Ng, A. Y., An analysis of single-layer networks in unsupervised feature learning. In Aistats, 2011.

  108. Ronneberger, O., Fischer, P., and Brox, T., U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention 9351:234–241, 2015.

    Google Scholar 

  109. Heckerman, D., A tractable inference algorithm for diagnosing multiple diseases. Proceedings of the Fifth Annual Conference on Uncertainty in Artificial Intelligence. North-Holland Publishing Co:163–172, 1990.

  110. Dalal, N., and Triggs, B., Histograms of oriented gradients for human detection 886–893, 2005.

  111. Ojala, T., Pietikainen, M., and Harwood, D., A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1):51–59, 1996.

    Google Scholar 

  112. Krizhevsky, A., Sutskever, I., and Hinton, G. E., ImageNet classification with deep convolutional neural networks. In: NIPS: 1097–1105, 2012.

  113. Bengio, Y., Louradour, J., Collobert, R., and Weston, J., Curriculum learning. Procintconfon Machine Learning 60(60):6, 2009.

    Google Scholar 

  114. Mcnittgray, M. F., Armato, S. G., Iii, M. C. R., Reeves, A. P., Mclennan, G., Pais, R., Freymann, J., Brown, M. S., Engelmann, R. M., and Bland, P. H., The Lung Image Database Consortium (LIDC) Data Collection Process for Nodule Detection and Annotation. Acad. Radiol. 14(12):1464–1474, 2007.

    Google Scholar 

  115. Dhara, A. K., Mukhopadhyay, S., Gupta, R. D., Garg, M., and Khandelwal, N., Erratum to: A Segmentation Framework of Pulmonary Nodules in Lung CT Images. J. Digit. Imaging 29(1):86–103, 2016.

    Google Scholar 

  116. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P. A., Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 11(12):3371–3408, 2010.

    Google Scholar 

  117. Jing-Jing, W., Hai-Feng, W., Tao, S., Xia, L., Wei, W., Li-Xin, T., Da, H., Ping-Xin, L., Wen, H., and Xiu-Hua, G., Prediction models for solitary pulmonary nodules based on curvelet textural features and clinical parameters. Asian Pacific Journal of Cancer Prevention Apjcp 14(10):6019–6023, 2013.

    Google Scholar 

  118. Haifeng, W., Tao, S., Jingjing, W., Xia, L., Wei, W., Da, H., Pingxin, L., Wen, H., Keyang, W., and Xiuhua, G., Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography. J. Digit. Imaging 26(4):797–802, 2013.

    Google Scholar 

  119. Farag, A. A., Farag, A. A., Falk, R., Ali, A. M., Graham, J., Elshazly, S., Evaluation of geometric feature descriptors for detection and classification of lung nodules in low dose CT scans of the chest, 2011.

  120. Farag, A., Elhabian, S., Graham, J., Farag, A., and Falk, R., Toward Precise Pulmonary Nodule Descriptors for Nodule Type Classification. International Conference on Medical Image Computing & Computer-assisted Intervention, 2010.

  121. Lin, P. L., Huang, P. W., Lee, C. H., and Wu, M. T., Automatic classification for solitary pulmonary nodule in CT image by fractal analysis based on fractional Brownian motion model. Pattern Recogn. 46(12):3279–3287, 2013.

    Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (grant number 81871457), National Natural Science Foundation of China (grant number 51811530310), National Natural Science Foundation of China (grant number 51775368) and Science and Technology Planning Project of Guangdong Province, China (grant number 2017B020210004) and the Science and Technology Project of Tianjin (grant number 18YFZCSY01300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yang, Z., Gong, L. et al. An Appraisal of Nodule Diagnosis for Lung Cancer in CT Images. J Med Syst 43, 181 (2019). https://doi.org/10.1007/s10916-019-1327-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1327-0

Keywords

Navigation