Skip to main content

Advertisement

Log in

Lung Nodule Detection based on Ensemble of Hand Crafted and Deep Features

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Lung cancer is considered as a deadliest disease worldwide due to which 1.76 million deaths occurred in the year 2018. Keeping in view its dreadful effect on humans, cancer detection at a premature stage is a more significant requirement to reduce the probability of mortality rate. This manuscript depicts an approach of finding lung nodule at an initial stage that comprises of three major phases: (1) lung nodule segmentation using Otsu threshold followed by morphological operation; (2) extraction of geometrical, texture and deep learning features for selecting optimal features; (3) The optimal features are fused serially for classification of lung nodule into two categories that is malignant and benign. The lung image database consortium image database resource initiative (LIDC-IDRI) is used for experimentation. The experimental outcomes show better performance of presented approach as compared with the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gould, M. K., Fletcher, J., Iannettoni, M. D., Lynch, W. R., Midthun, D. E., Naidich, D. P., and Ost, D. E., Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines. Chest 132(3):108S–130S, 2007.

    PubMed  Google Scholar 

  2. Naqi, S., Sharif, M., Yasmin, M., and Fernandes, S. L., Lung nodule detection using polygon approximation and hybrid features from CT images. Current Medical Imaging Reviews 14(1):108–117, 2018.

    Google Scholar 

  3. Messay, T., Hardie, R. C., and Rogers, S. K., A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med. Image Anal. 14(3):390–406, 2010.

    PubMed  Google Scholar 

  4. Murphy, K., van Ginneken, B., Schilham, A. M., De Hoop, B., Gietema, H., and Prokop, M., A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med. Image Anal. 13(5):757–770, 2009.

    CAS  PubMed  Google Scholar 

  5. Veronesi, G., Bellomi, M., Mulshine, J. L., Pelosi, G., Scanagatta, P., Paganelli, G., Maisonneuve, P., Preda, L., Leo, F., and Bertolotti, R., Lung cancer screening with low-dose computed tomography: a non-invasive diagnostic protocol for baseline lung nodules. Lung Cancer 61(3):340–349, 2008.

    PubMed  Google Scholar 

  6. Kurihara, Y., Matsuoka, S., Yamashiro, T., Fujikawa, A., Matsushita, S., Yagihashi, K., and Nakajima, Y., MRI of pulmonary nodules. Am. J. Roentgenol. 202(3):W210–W216, 2014.

    Google Scholar 

  7. Amin, J., Sharif, M., Yasmin, M., and Fernandes, S. L., A distinctive approach in brain tumor detection and classification using MRI. Pattern Recogn. Lett., 2017.

  8. Nida, N., Sharif, M., Khan, M. U. G., Yasmin, M., and Fernandes, S. L., A framework for automatic colorization of medical imaging. IIOAB J 7:202–209, 2016.

    Google Scholar 

  9. Amin, J., Sharif, M., Yasmin, M., and Fernandes, S. L., Big data analysis for brain tumor detection: Deep convolutional neural networks. Futur. Gener. Comput. Syst. 87:290–297, 2018.

    Google Scholar 

  10. Sobue, T., Moriyama, N., Kaneko, M., Kusumoto, M., Kobayashi, T., Tsuchiya, R., Kakinuma, R., Ohmatsu, H., Nagai, K., and Nishiyama, H., Screening for lung cancer with low-dose helical computed tomography: anti-lung cancer association project. J. Clin. Oncol. 20(4):911–920, 2002.

    PubMed  Google Scholar 

  11. White, C., New techniques in thoracic imaging. Boca Raton: CRC Press, 2001.

    Google Scholar 

  12. Jiang, H., Ma, H., Qian, W., Gao, M., and Li, Y., An automatic detection system of lung nodule based on multigroup patch-based deep learning network. IEEE Journal of Biomedical and Health Informatics 22(4):1227–1237, 2018.

    PubMed  Google Scholar 

  13. Ali I, Hart G, Gunabushanam G, Liang Y, Muhammad W, Nartowt B, Kane M, Ma X, Deng J (2018) lung nodule Detection via Deep reinforcement learning. Front. Oncol. 8:108

  14. Thawani, R., McLane, M., Beig, N., Ghose, S., Prasanna, P., Velcheti, V., and Madabhushi, A., Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer 115:34–41, 2018.

    PubMed  Google Scholar 

  15. Li, C., Zhu, G., Wu, X., and Wang, Y., False-positive reduction on lung nodules detection in chest radiographs by ensemble of convolutional neural networks. IEEE Access 6:16060–16067, 2018.

    Google Scholar 

  16. M Naqi, S., and Sharif, M., Recent developments in computer aided diagnosis for lung nodule detection from CT images: a review. Current Medical Imaging Reviews 13(1):3–19, 2017.

    Google Scholar 

  17. Dehmeshki, J., Ye, X., Lin, X., Valdivieso, M., and Amin, H., Automated detection of lung nodules in CT images using shape-based genetic algorithm. Comput. Med. Imaging Graph. 31(6):408–417, 2007.

    PubMed  Google Scholar 

  18. Mattoccia, S., Tombari, F., and Di Stefano, L., Efficient template matching for multi-channel images. Pattern Recogn. Lett. 32(5):694–700, 2011.

    Google Scholar 

  19. Ukil, S., and Reinhardt, J. M., Anatomy-guided lung lobe segmentation in X-ray CT images. IEEE Trans. Med. Imaging 28(2):202–214, 2009.

    PubMed  PubMed Central  Google Scholar 

  20. Han, H., Li, L., Han, F., Song, B., Moore, W., and Liang, Z., Fast and adaptive detection of pulmonary nodules in thoracic CT images using a hierarchical vector quantization scheme. IEEE journal of Biomedical and Health Informatics 19(2):648–659, 2015.

    PubMed  Google Scholar 

  21. Gurcan, M. N., Sahiner, B., Petrick, N., Chan, H. P., Kazerooni, E. A., Cascade, P. N., and Hadjiiski, L., Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system. Med. Phys. 29(11):2552–2558, 2002.

    PubMed  Google Scholar 

  22. Lee, Y., Hara, T., Fujita, H., Itoh, S., and Ishigaki, T., Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Trans. Med. Imaging 20(7):595–604, 2001.

    CAS  PubMed  Google Scholar 

  23. Dai, S., Lu, K., Dong, J., Zhang, Y., and Chen, Y., A novel approach of lung segmentation on chest CT images using graph cuts. Neurocomputing 168:799–807, 2015.

    Google Scholar 

  24. Firmino, M., Angelo, G., Morais, H., Dantas, M. R., and Valentim, R., Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy. Biomed. Eng. Online 15(1):2, 2016.

    PubMed  PubMed Central  Google Scholar 

  25. Ozekes, S., Osman, O., and Ucan, O. N., Nodule detection in a lung region that's segmented with using genetic cellular neural networks and 3D template matching with fuzzy rule based thresholding. Korean J. Radiol. 9(1):1–9, 2008.

    PubMed  PubMed Central  Google Scholar 

  26. Mukhopadhyay, S., A segmentation framework of pulmonary nodules in lung CT images. J. Digit. Imaging 29(1):86–103, 2016.

    PubMed  Google Scholar 

  27. Gupta, A., Saar, T., Martens, O., and Moullec, Y. L., Automatic detection of multisize pulmonary nodules in CT images: Large-scale validation of the false-positive reduction step. Med. Phys. 45(3):1135–1149, 2018.

    PubMed  Google Scholar 

  28. Keshani, M., Azimifar, Z., Tajeripour, F., and Boostani, R., Lung nodule segmentation and recognition using SVM classifier and active contour modeling: A complete intelligent system. Comput. Biol. Med. 43(4):287–300, 2013.

    PubMed  Google Scholar 

  29. Ye, X., Lin, X., Dehmeshki, J., Slabaugh, G., and Beddoe, G., Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE Trans. Biomed. Eng. 56(7):1810–1820, 2009.

    PubMed  Google Scholar 

  30. da Silva Sousa, J. R. F., Silva, A. C., de Paiva, A. C., and Nunes, R. A., Methodology for automatic detection of lung nodules in computerized tomography images. Comput. Methods Prog. Biomed. 98(1):1–14, 2010.

    Google Scholar 

  31. Teramoto, A., and Fujita, H., Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter. Int. J. Comput. Assist. Radiol. Surg. 8(2):193–205, 2013.

    PubMed  Google Scholar 

  32. Brown, M. S., Lo, P., Goldin, J. G., Barnoy, E., Kim, G. H. J., McNitt-Gray, M. F., and Aberle, D. R., Toward clinically usable CAD for lung cancer screening with computed tomography. Eur. Radiol. 24(11):2719–2728, 2014.

    PubMed  Google Scholar 

  33. Riccardi, A., Petkov, T. S., Ferri, G., Masotti, M., and Campanini, R., Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification. Med. Phys. 38(4):1962–1971, 2011.

    PubMed  Google Scholar 

  34. Gong, J., J-y, L., L-j, W., X-w, S., Zheng, B., and S-d, N., Automatic detection of pulmonary nodules in CT images by incorporating 3D tensor filtering with local image feature analysis. Physica Medica 46:124–133, 2018.

    PubMed  Google Scholar 

  35. Nibali, A., He, Z., and Wollersheim, D., Pulmonary nodule classification with deep residual networks. Int. J. Comput. Assist. Radiol. Surg. 12(10):1799–1808, 2017.

    PubMed  Google Scholar 

  36. Dou, Q., Chen, H., Yu, L., Qin, J., and Heng, P.-A., Multilevel contextual 3-d cnns for false positive reduction in pulmonary nodule detection. IEEE Trans. Biomed. Eng. 64(7):1558–1567, 2017.

    PubMed  Google Scholar 

  37. Sun, W., Zheng, B., and Qian, W., Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Comput. Biol. Med. 89:530–539, 2017.

    PubMed  Google Scholar 

  38. Wang, C., Elazab, A., Wu, J., and Hu, Q., Lung nodule classification using deep feature fusion in chest radiography. Comput. Med. Imaging Graph. 57:10–18, 2017.

    PubMed  Google Scholar 

  39. Xie, Y., Zhang, J., Xia, Y., Fulham, M., and Zhang, Y., Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT. Information Fusion 42:102–110, 2018.

    Google Scholar 

  40. Fernandes, S. L., Gurupur, V. P., Lin, H., and Martis, R. J., A Novel fusion approach for early lung cancer detection using computer aided diagnosis techniques. Journal of Medical Imaging and Health Informatics 7(8):1841–1850, 2017.

    Google Scholar 

  41. Peterson, L. E., K-nearest neighbor. Scholarpedia 4(2):1883, 2009.

    Google Scholar 

  42. Murphy, K. P., Naive bayes classifiers. Vol. 18. Vancouver: University of British Columbia, 2006, 60.

    Google Scholar 

  43. Burges, C. J., A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2):121–167, 1998.

    Google Scholar 

  44. Breiman, L., Bagging predictors. Mach. Learn. 24(2):123–140, 1996.

    Google Scholar 

  45. Sun, Y., Liu, Z., Todorovic, S., and Li, J., Adaptive boosting for SAR automatic target recognition. IEEE Trans. Aerosp. Electron. Syst. 43(1):112–125, 2007.

    Google Scholar 

  46. Swain, P. H., and Hauska, H., The decision tree classifier: Design and potential. IEEE Trans. Geosci. Electron. 15(3):142–147, 1977.

    Google Scholar 

  47. Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall, 469–476, 1990.

  48. Otsu, N., "A Threshold Selection Method from Gray-Level Histograms." IEEE Transactions on Systems, Man, and Cybernetics. 9(1):62–66, 1979.

    Google Scholar 

  49. Jolliffe, I. T. Principal Component Analysis. 2nd ed., Springer, 2002.

  50. Despotović, I., Goossens, B., and Philips, W., MRI segmentation of the human brain: challenges, methods, and applications. Computational and Mathematical Methods in Medicine:1–23, 2015.

    Google Scholar 

  51. Ojala, T., M. Pietikainen, and T. Maenpaa. “Multiresolution Gray Scale and Rotation Invariant Texture Classification With Local Binary Patterns.” IEEE Transactions on Pattern Analysis and Machine Intelligence. 24(7):971–987, 2002.

    Google Scholar 

  52. https://www.mathworks.com/help/images/ref/regionprops.html#buoixjn-1. Accessed 2 Nov 2019.

  53. Nasir, M., Attique Khan, M., Sharif, M., Lali, I. U., Saba, T., and Iqbal, T., An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc. Res. Tech., 2018.

  54. Lehmann, G., and Legland, D., Efficient N-dimensional surface estimation using Crofton formula and run-length encoding. Efficient N-Dimensional surface estimation using Crofton formula and run-length encoding, Kitware INC, 2012.

  55. Krizhevsky, A., Sutskever, I., Hinton, G. E., Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, 2012. pp 1097–1105

  56. Ansari, G. J., Shah, J. H., Yasmin, M., Sharif, M., and Fernandes, S. L., A novel machine learning approach for scene text extraction. Futur. Gener. Comput. Syst. 87:328–340, 2018.

    Google Scholar 

  57. Liaqat, A., Khan, M. A., Shah, J. H., Sharif, M., Yasmin, M., and Fernandes, S. L., Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection. Journal of Mechanics in Medicine and Biology 18(04):1850038, 2018.

    Google Scholar 

  58. Sharif, M., Khan, M. A., Faisal, M., Yasmin, M., and Fernandes, S. L., A framework for offline signature verification system: Best features selection approach. Pattern Recogn. Lett., 2018.

  59. Shah, J. H., Sharif, M., Yasmin, M., and Fernandes, S. L., Facial expressions classification and false label reduction using LDA and threefold SVM. Pattern Recogn. Lett., 2017.

  60. Tumer, K., and Ghosh, J., Error correlation and error reduction in ensemble classifiers. Connect. Sci. 8(3–4):385–404, 1996.

    Google Scholar 

  61. Bishop, C. M. Pattern recognition and machine learning. springer, 2006.

  62. Armato, III, S. G., McLennan, G., McNitt-Gray, M. F., Meyer, C. R., Yankelevitz, D., Aberle, D. R., Henschke, C. I., Hoffman, E. A., Kazerooni, E. A., and MacMahon, H., Lung image database consortium: developing a resource for the medical imaging research community. Radiology 232(3):739–748, 2004.

    PubMed  Google Scholar 

  63. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. pp 1–9

  64. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., and Bernstein, M., Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3):211–252, 2015.

    Google Scholar 

  65. He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. pp 770–778.

  66. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017. pp 4700–4708

  67. Chen, C.-H., Chang, C.-K., Tu, C.-Y., Liao, W.-C., Wu, B.-R., Chou, K.-T., Chiou, Y.-R., Yang, S.-N., Zhang, G., and Huang, T.-C., Radiomic features analysis in computed tomography images of lung nodule classification. PLoS One 13(2):e0192002, 2018. https://doi.org/10.1371/journal.pone.0192002.s001.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Naqi, S. M., Sharif, M., and Yasmin, M., Multistage segmentation model and SVM-ensemble for precise lung nodule detection. Int. J. Comput. Assist. Radiol. Surg.:1–13, 2018.

  69. Naqi, S. M., Sharif, M., and Jaffar, A., Lung nodule detection and classification based on geometric fit in parametric form and deep learning. Neural Comput. & Applic.:1–19, 2018.

  70. Bhatia, S., Sinha, Y., Goel, L., Lung Cancer Detection: A Deep Learning Approach. In: Soft Computing for Problem Solving. Springer, 2019, pp 699–705.

Download references

Acknowledgments

This work was supported by Research Project [Lung Cancer Diagnosis from CT Images]; Prince Sultan University; Saudi Arabia [SSP -18-5-03]”. Additionally, this work was partially supported by Artificial Intelligence and Data Analytics (AIDA) Lab, Prince Sultan University, Riyadh, Saudi Arabia.

Funding

This work was supported by Research and Innovation Center through grant number SSP-18-5-03; Prince Sultan University, Riyadh, Saudi Arabia. This work was also partially supported by AI & Data Analytics Lab (AIDA), Prince Sultan University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tanzila Saba or Muhammad Sharif.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest and all contribute equally in this work for results compilation and other technical support.

Ethical approval

This work is based on publicly available datasets. This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saba, T., Sameh, A., Khan, F. et al. Lung Nodule Detection based on Ensemble of Hand Crafted and Deep Features. J Med Syst 43, 332 (2019). https://doi.org/10.1007/s10916-019-1455-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1455-6

Keywords

Navigation