Skip to main content

Advertisement

Log in

Prevalence and Diagnosis of Neurological Disorders Using Different Deep Learning Techniques: A Meta-Analysis

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This paper dispenses an exhaustive review on deep learning techniques used in the prognosis of eight different neuropsychiatric and neurological disorders such as stroke, alzheimer, parkinson’s, epilepsy, autism, migraine, cerebral palsy, and multiple sclerosis. These diseases are critical, life-threatening and in most of the cases may lead to other precarious human disorders. Deep learning techniques are emerging soft computing technique which has been lucratively used to unravel different real-life problems such as pattern recognition (Face, Emotion, and Speech), traffic management, drug discovery, disease diagnosis, and network intrusion detection. This study confers the discipline, frameworks, and methodologies used by different deep learning techniques to diagnose different human neurological disorders. Here, one hundred and thirty-six different articles related to neurological and neuropsychiatric disorders diagnosed using different deep learning techniques are studied. The morbidity and mortality rate of major neuropsychiatric and neurological disorders has also been delineated. The performance and publication trend of different deep learning techniques employed in the investigation of these diseases has been examined and analyzed. Different performance metrics like accuracy, specificity, and sensitivity have also been examined. The research implication, challenges and the future directions related to the study have also been highlighted. Eventually, the research breaches are identified and it is witnessed that there is more scope in the diagnosis of migraine, cerebral palsy and stroke using different deep learning models. Likewise, there is a potential opportunity to use and explore the performance of Restricted Boltzmann Machine, Deep Boltzmann Machine and Deep Belief Network for diagnosis of different human neuropsychiatric and neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Figure 15:

Similar content being viewed by others

References

  1. Ghorbani, R., and Ghousi, R., Predictive data mining approaches in medical diagnosis: A review of some diseases prediction. International Journal of Data and Network Science 3(2):47–70, 2019.

    Google Scholar 

  2. Kennedy, D. P., and Adolphs, R., The social brain in psychiatric and neurological disorders. Trends Cogn Sci 16(11):559–572, 2012.

    PubMed  PubMed Central  Google Scholar 

  3. World Health Organization (2006) Neurological disorders: public health challenges. World Health Organization.Link:https://www.who.int/mental_health/neurology/chapter_2_neuro_disorders_public_h_challenges.pdf?ua=1(Accessed on 23 July 2019).

  4. Orru, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G., and Mechelli, A., Using SVM to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosci Biobehav Rev 36(4):1140–1152, 2012.

    PubMed  Google Scholar 

  5. Chin, J. H., and Vora, N., The global burden of neurologic diseases. Neurology. 83(4):349–351, 2014.

    PubMed  PubMed Central  Google Scholar 

  6. Sharma, M., Singh, G., and Singh, R., Stark assessment of lifestyle based human disorders using data mining based learning techniques. IRBM. 38:305–324, 2017.

    Google Scholar 

  7. Gautam, R., Kaur, P., and Sharma, M., A comprehensive review on nature-inspired computing algorithms for the diagnosis of chronic disorders in human beings. Progress in Artificial Intelligence. 8(4):1–24, 2019.

    CAS  Google Scholar 

  8. Kaur, P., and Sharma, M., Diagnosis of human psychological-disorders using supervised-learning and nature-inspired computing techniques: A meta-analysis. J Med Syst 43(7):204, 2019.

    PubMed  Google Scholar 

  9. Kaur, P., and Sharma, M., A survey on using nature-inspired computing for fatal disease diagnosis. International Journal of Info Sys Modelling and Design 8(2):70–91, 2017.

    Google Scholar 

  10. Gawehn, E., Hiss, J. A., and Schneider, G., Deep learning in drug discovery. Molecular informatics 35(1):3–14, 2016.

    CAS  PubMed  Google Scholar 

  11. Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., and Iyengar, S. S., A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys (CSUR) 51(5): 92, 2018.

    Google Scholar 

  12. Wason, R., Deep learning: Evolution and expansion. Cogn Syst Res 52:701–708, 2018.

    Google Scholar 

  13. Cireşan, D. C., Giusti, A., Gambardella, L. M., and Schmidhuber. Mitosis detection in breast cancer histology images with deep neural networks. In International Conf. on Med. Image-Computing and Computer-assisted Intervention, Springer,Heidelberg, 411–418, 2013.

  14. Ramesh, S., Caytiles, R. D., and Iyengar, N. C. S., A deep-learning approach to identify diabetes. Advanced Science and Tech Letter 145:44–49, 2017.

    Google Scholar 

  15. Ma, X., Yang, H., Chen, Q., Huang, D., and Wang, Y., Depaudionet: An efficient deep model for audio-based depression classification. In Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge, ACM, 35–42,2016.

  16. Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A., and Meneguzzi, F., Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage: Clinical 17:16–23, 2018.

    Google Scholar 

  17. Daoud, H. G., Abdelhameed, A. M., and Bayoumi, M., Automatic epileptic seizure detection based on empirical mode decomposition and deep neural network. In 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA) IEEE, 182–186, 2018.

  18. Kadam, V. J., and Jadhav, S. M., Feature Ensemble Learning Based on Sparse Auto-encoders for Diagnosis of Parkinson’s Disease. In Computing, Communication and Signal Processing, Springer, Singapore. 810:567–581, 2019.

  19. Gulhare, K. K., Shukla, S. P., and Sharma, L. K., Deep Neural Network Classification method to Alzheimer’s Disease Detection. International Journals of Advanced Research in Computer Science and Software Engineering 7(6):1–4, 2017.

    Google Scholar 

  20. Abdel-Zaher, A. M., and Eldeib, A. M., Breast-cancer classification using deep belief networks. Expert Syst Appl 46:139–144, 2016.

    Google Scholar 

  21. Kim, J., Kang, U., and Lee, Y., Statistics and deep belief network-based cardiovascular risk prediction. Healthcare Informatics Research 23(3):169–175, 2017.

    PubMed  PubMed Central  Google Scholar 

  22. Cai, H., Sha, X., Han, X., Wei, S., and Hu, B., Pervasive EEG diagnosis of depression using Deep Belief Network with three-electrodes EEG collector. In 2016 IEEE International Conference on Bioinformatics and Biomedicine, 1239–1246, 2016.

  23. Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., and Madabhushi, A., Stacked sparse autoencoder for nuclei detection on breast cancer-histopathology images. IEEE Trans Med Imaging 35(1):119–130, 2016.

    PubMed  Google Scholar 

  24. Chen, L., Zhou, M., Su, W., Wu, M., She, J., and Hirota, K., Softmax regression-based deep sparse autoencoder network for facial emotion recognition in human-robot interaction. Inf Sci 428:49–61, 2018.

    Google Scholar 

  25. Dolph, C. V., Alam, M., Shboul, Z., Samad, M. D., and Iftekharuddin, K. M., Deep learning of texture and structural features for multiclass Alzheimer's disease classification. In 2017 International Joint Conference on Neural Networks, 2259–2266, 2017.

  26. Zhang, Y. N., Can a smartphone diagnose Parkinson disease? A deep neural network method and telediagnosis system implementation. Parkinson’s Disease 2017:1–11, 2017.

    CAS  Google Scholar 

  27. Cho, J., Hu, Z., and Sartipi, M., Post-stroke discharge disposition prediction using deep learning. In SoutheastConf IEEE, 1-2, 2017.

  28. Lin, Q., Ye, S. Q., Huang, X. M., Li, S. Y., Zhang, M. Z., Xue, Y., and Chen, W. S., Classification of epileptic EEG signals with stacked sparse autoencoder based on deep learning. In International Conference on Intelligent Computing. Springer, Cham, 802–810, 2016.

    Google Scholar 

  29. Wu, L., Zhou, W., Wan, X., Zhang, J., Shen, L., Hu, S., and Liu, J., A deep neural network improves endoscopic detection of early gastric cancer without blind spots. Endoscopy. 51(06):522–531, 2019.

    PubMed  Google Scholar 

  30. Albahar, M. A., Skin lesion classification using convolutional neural network with novel Regularizer. IEEE Access 7:38306–38313, 2019.

    Google Scholar 

  31. Kumar, S., Negi, A., and Singh, J. N., Semantic Segmentation Using Deep Learning for Brain Tumor MRI via Fully Convolution Neural Networks. In Information and Communication Technology for Intelligent Systems, Springer, Singapore,11–19, 2019.

  32. Ren, X., Xiang, L., Nie, D., Shao, Y., Zhang, H., Shen, D., and Wang, Q., Interleaved 3D-CNN s for joint segmentation of small volume structures in head and neck CT images. Med Phys 45(5):2063–2075, 2018.

    PubMed  PubMed Central  Google Scholar 

  33. Lo, S. C. B., Li, H., Wang, Y., Kinnard, L., and Freedman, M. T., A multiple circular path convolutions neural network system for detection of mammographic masses. IEEE Trans Med Imaging 21(2):150–158, 2002.

    PubMed  Google Scholar 

  34. Lang, R., Zhao, L., and Jia, K., Brain tumour image segmentation based on convolution neural network. In 2016 9th International Congress on Image and Signal-Processing, BioMed. Engg. and Informatics (CISP-BMEI) IEEE, 1402–1406, 2016.

  35. Dham, S., Sharma, A., and Dhall, A., Depression scale recognition from audio, visual and text analysis. arXiv preprint arXiv:1709.05865, 2017.

  36. Wan, S., Liang, Y., Zhang, Y., and Guizani, M., Deep multi-layer perceptron classifier for behaviour analysis to estimate Parkinson's disease severity using smartphones. IEEE Access 6:36825–36833, 2018.

    Google Scholar 

  37. Yang, H., Zhang, J., Liu, Q., and Wang, Y., Multimodal MRI-based classification of migraine: using deep learning CNN. Biomedical engineering online 17 (1): 138, 2018.

  38. Li, G., Liu, M., Sun, Q., Shen, D., and Wang, L., Early diagnosis of autism disease by multi-channel CNNs. In International Workshop on Machine Learning in Medical Imaging, Springer, Cham,303–309, 2018.

  39. Awate, G., Bangare, S., Pradeepini, G., and Patil, S, Detection of Alzheimers Disease from MRI using Convolutional Neural Network with Tensorflow. arXiv preprint arXiv:1806.10170, 2018.

  40. Gong, J., Lach, J., Qi, Y., and Goldman, M. D., Causal analysis of inertial body sensors for enhancing gait assessment separability towards multiple sclerosis diagnosis. 12th International Conf. on Wearable & Implantable Body-Sensor-Networks, IEEE, 1–6, 2015.

  41. Ma, J., Wu, F., Zhu, J., Xu, D., and Kong, D., A pre-trained CNN-based method for thyroid nodule diagnosis. Ultrasonics. 73:221–230, 2017.

    PubMed  Google Scholar 

  42. Öman, O., Mäkelä, T., Salli, E., Savolainen, S., and Kangasniemi, M., 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. European Radiology Experimental 3(1):8, 2019.

    PubMed  PubMed Central  Google Scholar 

  43. Vieira, S., Pinaya, W. H., and Mechelli, A., Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. NeurosciBiobehav Rev 74(1):58–75, 2017.

    Google Scholar 

  44. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., and Erickson, B. J., Deep learning for brain MRI segmentation: State of the art and future directions. J Digit Imaging 30(4):449–459, 2017.

    PubMed  PubMed Central  Google Scholar 

  45. Tandel, S., G., Biswas, M., Kakde, G., O., Tiwari, A., Suri, S., H., Turk, M., and Madhusudhan, K., B., A Review on a Deep Learning Perspective in Brain Cancer Classification. Cancers 11(1):111(1–32), 2019.

    PubMed Central  Google Scholar 

  46. Dinu, A. J., Ganesan, R., Joseph, F., and Balaji, A study on Deep Machine Learning Algorithms for diagnosis of diseases. Int J Appl Eng Res 12(17):6338–6346, 2017.

    Google Scholar 

  47. Siuly, S., and Zhang, Y., Medical big data: Neurological diseases diagnosis through medical data analysis. Data Science and Engineering 1(2):54–64, 2016.

    Google Scholar 

  48. Vos, T. et al., Global-burden of disease study 2013 collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet 386(9995):743–800, 2015.

    Google Scholar 

  49. Kalia, L. V., and Lang, A. E., Parkinson's disease. Lancet 386(9996):896–912, 2015.

    CAS  PubMed  Google Scholar 

  50. Dementia Fact sheet (2017) World Health Organization. Link:https://www.who.int/news-room/fact-sheets/detail/dementia. (Accessed on 26 July 2019).

  51. Theo, V. et al., Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1545–1600, 2016.

    Google Scholar 

  52. Wang, H. et al., Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1459–1544, 2016.

    Google Scholar 

  53. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 385(9963): 117–71, 2014.

  54. Oskoui, M., Coutinho, F., Dykeman, J., Jetté, N., and Pringsheim, T., An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Developmental Medicine & Child Neurology 55(6):509–519, 2013.

    Google Scholar 

  55. Stovner, L. J., Nichols, E., Steiner, T. J., Abd-Allah, F., Abdelalim, A., Al-Raddadi, R. M., and Edessa, D., Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology 17(11):954–976, 2018.

    Google Scholar 

  56. Feigin, V. L., Abajobir, A. A., Abate, K. H., Abd-Allah, F., Abdulle, A. M., Abera, S. F., and Aichour, M. T. E., Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the global burden of disease study 2015. The Lancet Neurology 16(11):877–897, 2017.

    Google Scholar 

  57. Deng, L., A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Transactions on Signal and Information Processing 3:1–29, 2014.

    Google Scholar 

  58. Razzak, M. I., Naz, S., and Zaib, A., Deep learning for medical image processing: Overview, challenges and the future. In Classification in BioApp, Springer, Cham. 26:323–350, 2018.

  59. LeCun, Y., Bengio, Y., and Hinton, G., Deep learning. Nature 521(7553):436–444, 2015.

    CAS  PubMed  Google Scholar 

  60. Ravì, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., and Yang, G., Deep learning for health informatics. IEEE Journal Of Biomedical and Health Informatics 21(1):4–21, 2017.

    PubMed  Google Scholar 

  61. Lan, K., Wang, D. T., Fong, S., Liu, L. S., Wong, K. K., and Dey, N., A survey of data mining and deep learning in bioinformatics. J Med Syst 42(8):139, 2018.

    PubMed  Google Scholar 

  62. Haridas, H., and Wilson, A., An Artificial Intelligence Approach for Predicting Different Types of Stroke. In 2018 Second international conference on inventive communication and computational technologies, IEEE, 1858-1861, 2018.

  63. Praveen, G. B., Agrawal, A., Sundaram, P., and Sardesai, S., Ischemic stroke lesion segmentation using stacked sparse autoencoder. Comput Biol Med 99:38–52, 2018.

    CAS  PubMed  Google Scholar 

  64. Jung, S. M., and Whangbo, T. K., Evaluating a Deep-Learning System for Automatically Calculating the Stroke ASPECT Score. In 2018 International conference on information and communication technology convergence, IEEE, 564-567, 2018.

  65. Liu, Z., Cao, C., Ding, S., Liu, Z., Han, T., and Liu, S., Towards clinical diagnosis: Automated stroke lesion segmentation on multi-spectral MR image using convolutional neural network. IEEE Access 6:57006–57016, 2018.

    Google Scholar 

  66. Stier, N., Vincent, N., Liebeskind, D., and Scalzo, F., Deep learning of tissue fate features in acute ischemic stroke. In 2015 IEEE international conference on bioinformatics and biomedicine, IEEE, 1316-1321, 2015

  67. Giri, E. P., Fanany, M. I., Arymurthy, A. M., and Wijaya, S. K., Ischemic stroke identification based on EEG and EOG using ID convolutional neural network and batch normalization. In 2016 International conference on advanced computer science and information systems, IEEE, 484-491, 2016.

  68. Liao, D., and Lu, H Classify autism and control based on deep learning and community structure on resting-state fMRI. In 2018 Tenth international conference on advanced computational intelligence, IEEE, 289-294, 2018.

  69. Guo, X., Dominick, K. C., Minai, A. A., Li, H., Erickson, C. A., and Lu, L. J., Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front Neurosci 11(1–19):460, 2017.

    PubMed  PubMed Central  Google Scholar 

  70. Kong, Y., Gao, J., Xu, Y., Pan, Y., Wang, J., and Liu, J., Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing 324:63–68, 2019.

    Google Scholar 

  71. Rad, N. M., and Furlanello, C., Applying deep learning to stereotypical motor movement detection in autism spectrum disorders. In 2016 IEEE 16th International Conference on Data Mining Workshops IEEE, 1235–1242, 2016.

  72. Kidziński, Ł., Delp, S., and Schwartz, M., Automatic real-time gait event detection in children using deep neural networks. PLoS One 14(1):1–11, 2019.

    Google Scholar 

  73. Valverde, S., Cabezas, M., Roura, E., González-Villà, S., Pareto, D., Vilanova, J. C., and Lladó, X., Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage. 155:159–168, 2017.

    PubMed  Google Scholar 

  74. Roy, S., Butman, J. A., Reich, D. S., Calabresi, P. A., and Pham, D. L., Multiple sclerosis lesion segmentation from brain MRI via fully convolutional neural networks. arXiv preprint arXiv.1803.09172:1–14, 2018.

  75. Karaca, Y., Cattani, C., and Moonis, M., Comparison of Deep Learning and Support Vector Machine Learning for Subgroups of Multiple Sclerosis. In International Conference on Computational Science and Its Applications,Springer, Cha,142-153, 2017.

    Google Scholar 

  76. Gong, J., Goldman, M. D., and Lach, J., Deepmotion: a deep convolutional neural network on inertial body sensors for gait assessment in multiple sclerosis. In 2016 IEEE conference of wireless health, IEEE, 1-8, 2016.

  77. Benyoussef, E. M., Elbyed, A., and El Hadiri, H., 3D MRI classification using KNN and deep neural network for Alzheimer’s disease diagnosis. In International Conf. on Advanced Intelligent Sys. Sustainable Development, Springer, Cham, 154–158, 2018.

    Google Scholar 

  78. Jha, D., and Kwon, G., Alzheimer’s disease detection using sparse autoencoder, scale conjugate gradient and softmax output layer with fine tuning. International Journal of Machine Learning and Computing 7(1):13–17, 2017.

    Google Scholar 

  79. Rieke, J., Eitel, F., Weygandt, M., Haynes, J. D., and Ritter, K., Visualizing convolutional networks for MRI-based diagnosis of Alzheimer’s disease. In Understanding and Interpreting Machine Learning in Medical Image Computing Applications, Springer, Cham, 24-31, 2018.

    Google Scholar 

  80. Bäckström, K., Nazari, M., Gu, I. Y. H., and Jakola, A. S., An efficient 3D deep convolutional network for Alzheimer's disease diagnosis using MR images. In 2018 IEEE 15th international symposium on biomedical imaging, IEEE, 149-153, 2018.

  81. Kruthika, K. R., and Maheshappa, H. D., Alzheimer's disease neuroimaging initiative: CBIR system using capsule networks and 3D CNN for Alzheimer's disease diagnosis. Informatics in Medicine Unlocked 14:59–68, 2019.

    Google Scholar 

  82. Aderghal, K., Khvostikov, A., Krylov, A., Benois-Pineau, J., Afdel, K., and Catheline, G., Classification of Alzheimer Disease on Imaging Modalities with Deep CNNs Using Cross-Modal Transfer Learning. In 2018 IEEE 31st international symposium on computer-based medical systems, IEEE, 345-350, 2018.

  83. Yang, M., Yang, P., Elazab, A., Hou, W., Li, X., Wang, T., and Lei, B., Join and Deep Ensemble Regression of Clinical Scores for Alzheimer’s Disease Using Longitudinal and Incomplete Data. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1254–1257, 2018.

  84. Basaia, S., Agosta, F., Wagner, L., Canu, E., Magnani, G., and Santangelo, R., Alzheimer's Disease Neuroimaging Initiative: Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage: Clinical 21(1-8):101645, 2019.

    Google Scholar 

  85. Tang, H., Yao, E., Tan, G., and Guo, X., A Fast and Accurate 3D Fine-Tuning Convolutional Neural Network for Alzheimer’s Disease Diagnosis. In International CCF Conference on Artificial Intelligence, Springer, Singapore, 115–126, 2018.

  86. Cui, R., Liu, M., Alzheimer's disease neuroimaging initiative: RNN-based longitudinal analysis for diagnosis of Alzheimer-disease. Computerized Med. Imaging and Graphics, 1-25, 2019.

  87. Cui, R., and Liu, M., Hippocampus Analysis by Combination of 3D DenseNet and Shapes for Alzheimer's Disease Diagnosis. IEEE J Biomed Health Inform 23(5):1–8, 2018.

    Google Scholar 

  88. Wang, H., Shen, Y., Wang, S., Xiao, T., Deng, L., Wang, X., and Zhao, X., Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease. Neurocomputing 333:145–156, 2019.

    Google Scholar 

  89. Spasov, S., Passamonti, L., Duggento, A., Lio, P., and Toschi, N., Alzheimer's Disease Neuroimaging Initiative. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. NeuroImage 189:276–287, 2019.

    PubMed  Google Scholar 

  90. Zheng, C., Xia, Y., Chen, Y., Yin, X., and Zhang, Y., Early Diagnosis of Alzheimer ‘s disease by Ensemble Deep Learning Using FDG-PET. In International Conference on Intelligent Science and Big Data Engineering,Springer, Cham, 614–622, 2018.

  91. Cheng, D., and Liu, M., CNNs based multi-modality classification for AD diagnosis. In 2017 10th international conference on image and signal processing, BioMedical Engineering and Informatics, IEEE, 1-5, 2017.

  92. Farooq, A., Anwar, S., Awais, M., and Rehman, S., A deep CNN based multi-class classification of Alzheimer's disease using MRI. In 2017 IEEE international conference on imaging systems and techniques, IEEE, 1-6, 2017.

  93. Gunawardena, K. A. N. N. P., Rajapakse, R. N., and Kodikara, N. D.,Applying convolutional neural networks for pre-detection of alzheimer's disease from structural MRI data. In 2017 24th international conference on mechatronics and machine vision in practice, IEEE, 1-7, 2017.

  94. Shi, J., Zheng, X., Li, Y., Zhang, Q., and Ying, S., Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease. IEEE Journal of Biomedical and Health Informatics 22(1):173–183, 2017.

    PubMed  Google Scholar 

  95. Ju, R., Hu, C., and Li, Q., Early diagnosis of Alzheimer's disease based on resting-state brain networks and deep learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics 16(1):244–257, 2017.

    PubMed  Google Scholar 

  96. Amoroso, N., Diacono, D., Fanizzi, A., La Rocca, M., Monaco, A., and Lombardi, A., Alzheimer's Disease Neuroimaging Initiative: Deep learning reveals Alzheimer's disease onset in MCI subjects: Results from an international challenge. J Neurosci Methods 302:3–9, 2018.

    PubMed  Google Scholar 

  97. Kumar, S. S., and Nandhini, M., Multi-tasks Deep Learning Model for classifying MRI images of AD/MCI Patients. International Journal of Engineering and Technology 9(3):1925–1930, 2017.

    Google Scholar 

  98. Zheng, X., Shi, J., Li, Y., Liu, X., and Zhang, Q., Multi-modality stacked deep polynomial network-based feature learning for Alzheimer's disease diagnosis. In IEEE 13th international symposium on biomedical imaging, IEEE, 851–854, 2016.

  99. Sarraf, S., DeSouza, D. D., Anderson, J., and Tofighi, G., DeepAD: Alzheimer′ s disease classification via deep convolutional neural networks using MRI and fMRI. BioRxiv, 070441:1–15, 2017.

  100. Bhatkoti, P., and Paul, M., Early diagnosis of Alzheimer's disease: A multi-class deep learning framework with modified k-sparse autoencoder classification. In International Conference on Image and Vision Computing New Zealand, IEEE, 1-5,2016.

  101. Shi, B., Chen, Y., Zhang, P., Smith, C. D., and Liu, J., Alzheimer's Disease Neuroimaging Initiative:Nonlinear feature transformation and deep fusion for Alzheimer's Disease staging analysis. Pattern Recogn 63:487–498, 2017.

    Google Scholar 

  102. Billones, C. D., Demetria, O. J. L. D., Hostallero, D. E. D., and Naval, P. C., DemNet: A Convolutional Neural Network for the Detection of Alzheimer's Disease and Mild Cognitive Impairment. In IEEE Region 10 Conference, 3724–3727, 2016.

  103. Payan, A., and Montana. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv:1502.02506:1–9, 2015.

  104. Suk, H. I., Lee, S. W., and Shen, D., Alzheimer's disease neuroimaging InitiativeHierarchical feature representation and multimodal fusion with DL for AD/MCI diagnosis. Neuroimage. 101:569–582, 2014.

    PubMed  PubMed Central  Google Scholar 

  105. Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., and Feng, D., Early diagnosis of Alzheimer's disease with deep learning. In IEEE 11th international symposium on biomedical imaging. 1015–1018, 2014.

  106. Suk, H. I., Lee, S. W., and Shen, D., Alzheimer disease neuroimaging-initiative:Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain-Structure and Function 220(2):841–859, 2015.

    PubMed  Google Scholar 

  107. Suk, H. I., & Shen, D.,Deep learning-based feature representation for AD/MCI classification. In International Conference on Medical Image Computing and Computer-Assisted Intervention , Springer, Berlin, Heidelberg, 583–590, 2013.

  108. Zhao, Y., & He, L., Deep-learning in the EEG-diagnosis of Alzheimer’s disease. In Asian Conference on Computer Vision, Springer, Cham, 340-353, 2014.

  109. Wang, S. H., Phillips, P., Sui, Y., Liu, B., Yang, M., and Cheng, H., Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst 42(5):85, 2018.

    PubMed  Google Scholar 

  110. Islam, J., and Zhang, Y., A novel deep learning based multi-class classification method for Alzheimer’s disease detection using brain MRI data. In International Conference on Brain Informatics,Springer, Cham, 213–222, 2017.

  111. Kim, D., and Kim. Detection of Early Stage Alzheimer’s Disease using EEG Relative Power with Deep Neural Network. In 40th Annual International Conference of the IEEE Engg. in Medicine and Bio. Society, 352–355, 2018.

  112. Gallicchio, C., Micheli, A., and Pedrelli, L., Deep Echo State Networks for Diagnosis of Parkinson's Disease. arXiv preprint arXiv:1802.06708:1–6, 2018.

  113. Gong, B., Shi, J., Ying, S., Dai, Y., Zhang, Q., Dong, Y., and Zhang, Y., Neuroimaging-based diagnosis of Parkinson's disease with deep neural mapping large margin distribution machine. Neurocomputing 320:141–149, 2018.

    Google Scholar 

  114. Klyuzhin, I., Shenkov, N., Rahmim, A., and Sossi, Use of deep convolutional neural networks to predict Parkinson’s disease progression from DaTscan SPECT images. J Nucl. Med 59(1):29–29, 2018.

    Google Scholar 

  115. Oh, S. L., Hagiwara, Y., Raghavendra, U., Yuvaraj, R., Arunkumar, N., Murugappan, M., and Acharya, U. R., A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Computing and Applications.1–7, 2018.

  116. Khojasteh, P., Viswanathan, R., Aliahmad, B., Ragnav, S., Zham, P., and Kumar, D. K., Parkinson's Disease Diagnosis Based on Multivariate Deep Features of Speech Signal. In IEEE Life-Sciences Conf. , 187–190, 2018.

  117. Pereira, C. R., Pereira, D. R., Rosa, G. H., Albuquerque, V. H., Weber, S. A., Hook, C., and Papa, J. P., Handwritten dynamics assessment through convolutional neural networks: An application to Parkinson's disease identification. Artif Intell Med 87:67–77, 2018.

    PubMed  Google Scholar 

  118. Camps, J., Sama, A., Martin, M., Rodriguez-Martin, D., Perez-Lopez, C., Arostegui, J. M. M., and Prats, A., Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit. Knowl-Based Syst 139:119–131, 2018.

    Google Scholar 

  119. Choi, H., Ha, S., Im, H. J., Paek, S. H., and Lee, D. S., Refining diagnosis of Parkinson's disease with deep learning-based interpretation of dopamine transporter imaging. Neuroimage: Clinical 16:586–594, 2017.

    Google Scholar 

  120. Shinde, S., Prasad, S., Saboo, Y., Kaushick, R., Saini, J., Pal, P. K., and Ingalhalikar, M., Predictive markers for Parkinson's disease using deep neural nets on neuromelanin sensitive MRI. Neuroimage:Clinical. 22:101748, 2019.

    PubMed  PubMed Central  Google Scholar 

  121. Martinez-Murcia, F. J., Ortiz, A., Górriz, J. M., Ramírez, J., Segovia, F., Salas-Gonzalez, D., and Illán, I. A., A 3D convolutional neural-network approach for the diagnosis of Parkinson-disease. International Work-Conference on the Interplay Between Natural and Artificial Computation, Springer, Cham, 324–333, 2017.

    Google Scholar 

  122. Al-Fatlawi, A. H., Jabardi, M. H., and Ling, S. H., Efficient diagnosis system for Parkinson's disease using deep belief network. In IEEE Conference on Evolutionary Computation.1324–1330, 2016.

  123. Hussein, R., Palangi, H., Ward, R. K., and Wang, Z. J., Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals. Clin Neurophysiol 130(1):25–37, 2019.

    PubMed  Google Scholar 

  124. Yıldırım, Ö., Baloglu, U. B., and Acharya, U. R., A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Computing and Applications. 1–12, 2018.

  125. Wei, X., Zhou, L., Chen, Z., Zhang, L., and Zhou, Y., Automatic seizure detection using three-dimensional CNN based on multi-channel EEG. BMC Medical Informatics and Decision Making 18(5):73–127, 2018.

    Google Scholar 

  126. Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., and Adeli, H., Deep CNN for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 100:270–278, 2018.

    PubMed  Google Scholar 

  127. Yao, X., Li, X., Ye, Q., Huang, Y., Cheng, Q., and Zhang, G., A Robust Deep Learning Approach for Automatic Seizure Detection. arXiv preprint arXiv:1812.06562:1–13, 2018.

  128. Ullah, I., Hussain, M., and Aboalsamh, H., An automated system for epilepsy-detection using EEG-brain signals based on deep-learning approach. Expert Syst Appl 107:61–71, 2018.

    Google Scholar 

  129. Hosseini, M. P., Tran, T. X., Pompili, D., Elisevich, K., and Soltanian-Zadeh, H., Deep learning with edge computing for localization of epileptogenicity using multimodal rs-fMRI and EEG big data. In IEEE International Conference on Autonomic Computing, 83–92, 2017.

  130. Le, T. X., Le, T. T., Dinh, V. V., Tran, Q. L., Nguyen, L. T., and Nguyen, D. T., Deep learning for epileptic spike detection. VNU Journal of Science: Computer Science and Communication Engineering 33(2):1–13, 2017.

    Google Scholar 

  131. Hosseini, M. P., Pompili, D., Elisevich, K., and Soltanian-Zadeh, H., Optimized deep learning for EEG big data and seizure prediction BCI via internet of things. IEEE Transactions on Big Data 3(4):392–404, 2017.

    Google Scholar 

  132. Talathi, S. S., Deep Recurrent Neural Networks for seizure detection and early seizure detection systems. arXiv preprint arXiv:1706.03283:1–9, 2017.

  133. Thodoroff, P., Pineau, J., and Lim, A., Learning robust features using deep learning for automatic seizure detection. In Machine learning for healthcare conference, 178–190, 2016.

  134. Li, D., Wang, G., Song, T., and Jin, Q., Improving convolutional neural network using accelerated proximal gradient method for epilepsy diagnosis. InUKACC 11th International Conference on Control, IEEE, 1–6, 2016.

  135. Antoniades, A., Spyrou, L., Took, C. C., and Sanei, S., Deep learning for epileptic intracranial EEG data. In IEEE 26th International Workshop on Machine-Learning for Signal Processing, 1–6, 2016.

  136. Yuan, Y., Xun, G., Jia, K., and Zhang, A., A Multi-View Deep Learning Framework for EEG Seizure Detection. IEEE Journal of Biomedical and Health Informatics 23(1):83–94, 2019.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manik Sharma.

Ethics declarations

Conflict of interest

Authors proclaim that they have no dissension of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, R., Sharma, M. Prevalence and Diagnosis of Neurological Disorders Using Different Deep Learning Techniques: A Meta-Analysis. J Med Syst 44, 49 (2020). https://doi.org/10.1007/s10916-019-1519-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1519-7

Keywords

Navigation