Skip to main content
Log in

Versatile Convolutional Networks Applied to Computed Tomography and Magnetic Resonance Image Segmentation

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Medical image segmentation has seen positive developments in recent years but remains challenging with many practical obstacles to overcome. The applications of this task are wide-ranging in many fields of medicine, and used in several imaging modalities which usually require tailored solutions. Deep learning models have gained much attention and have been lately recognized as the most successful for automated segmentation. In this work we show the versatility of this technique by means of a single deep learning architecture capable of successfully performing segmentation on two very different types of imaging: computed tomography and magnetic resonance. The developed model is fully convolutional with an encoder-decoder structure and high-resolution pathways which can process whole three-dimensional volumes at once, and learn directly from the data to find which voxels belong to the regions of interest and localize those against the background. The model was applied to two publicly available datasets achieving equivalent results for both imaging modalities, as well as performing segmentation of different organs in different anatomic regions with comparable success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Spitzer V., Ackerman M. J., Scherzinger A. L., Whitlock D.: The visible human male: A technical report. J. Am. Med. Inform. Assoc. 3 (2): 118–130, 03, 1996

    Article  CAS  Google Scholar 

  2. Litjens G., Toth R., van de Ven W., Hoeks C., Kerkstra S., van Ginneken B., Vincent G., Guillard G., Birbeck N., Zhang J., Strand R., Malmberg F., Ou Y., Davatzikos C., Kirschner M., Jung F., Yuan J., Qiu W., Gao Q., Edwards P. E., Maan B., van der Heijden F., Ghose S., Mitra J., Dowling J., Barratt D., Huisman H., Madabhushi A.: Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Med. Image Anal. 18 (2): 359–373, 2014

  3. Hesamian M. H., Jia W., He X., Kennedy P.: Deep learning techniques for medical image segmentation achievements and challenges. J. Digit Imaging 32 (4): 582–596, 2019

    Article  Google Scholar 

  4. Ng H.P., Ong S.H., Foong K.W.C., Goh P.S., Nowinski W.L.: Medical image segmentation using k-means clustering and improved watershed algorithm.. In: 2006 IEEE Southwest Symposium on Image Analysis and Interpretation, 2006, pp 61–65

  5. Abdel-Maksoud E., Elmogy M., Al-Awadi R.: Brain tumor segmentation based on a hybrid clustering technique. Egypt. Inform. J. 16 (1): 71–81, 2015

    Article  Google Scholar 

  6. Jayadevappa D., Srinivas Kumar S., Murty D. S.: Medical image segmentation algorithms using deformable models: A review. IETE Tech. Rev. 28 (3): 248–255, 2011

    Article  Google Scholar 

  7. Ma Z., Tavares J. M. R. S., Jorge R. N., Mascarenhas T.: A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput. Methods Biomech. Biomed. Eng. 13 (2): 235–246, 2010. PMID: 19657801

    Article  Google Scholar 

  8. Chowdhary C. L., Acharjya D. P.: Segmentation and feature extraction in medical imaging: A systematic review. Procedia Comput. Sci. 167: 26–36, 2020. International Conference on Computational Intelligence and Data Science

    Article  Google Scholar 

  9. LeCun Y., Bengio Y., Hinton G.: Deep learning. Nature 521 (7553): 436–444, 2015

    Article  CAS  Google Scholar 

  10. Lequan Y., Yang X., Chen H., Qin J., Heng P. -A.: Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images.. In: Thirty-First AAAI Conf Artif Intell, 2017, pp 66–72

  11. Ronneberger O., Fischer P., Brox T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. In: (Navab N., Hornegger J., Wells W. M., Frangi A. F., Eds.) Med Image Comput Comput Interv – MICCAI 2015, Springer International Publishing, 2015, pp 234–241

  12. Çiçek Ö., Abdulkadir A., Lienkamp S. S., Brox T., Ronneberger O. (2016) 13D U-net: Learning dense volumetric segmentation from sparse annotation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 9901 LNCS:424–432

  13. Milletari F., Navab N., Ahmadi S. A.: V-Net: Fully convolutional neural networks for volumetric medical image segmentation.. In: Proc - 2016 4th Int Conf 3D Vision, 3DV 2016, 2016, pp 565–571

  14. He K., Zhang X., Ren S., Sun J.: Deep residual learning for image recognition.. In: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, 2016-Decem, 2016, pp 770–778

  15. He K., Zhang X., Ren S., Sun J. (2016) Identity mappings in deep residual networks

  16. Dumoulin V., Visin F. (2016) A guide to convolution arithmetic for deep learning

  17. Zhou S., Nie D., Adeli E., Yin J., Lian J., Shen D.: High-resolution encoder-decoder networks for low-contrast medical image segmentation. IEEE Trans. Image Process 29 (X): 461–475, 2019

    Google Scholar 

  18. Kingma D. P., Ba J. (2014) Adam: A method for stochastic optimization

  19. Yeghiazaryan V., Voiculescu I.: Family of boundary overlap metrics for the evaluation of medical image segmentation. J. Med. Imaging (Bellingham, Wash) 5 (1): 15006, 2018

    Google Scholar 

  20. Yang J., Sharp G., Veeraraghavan H., van Elmpt W., Dekker A., Lustberg T., Gooding M. (2017) Data from lung ct segmentation challenge

  21. Yang J., Veeraraghavan H., Armato III S. G., Farahani K., Kirby J. S., Kalpathy-Kramer J., Wouter van E., Dekker A., Han X., Feng X., Aljabar P., Oliveira B., van der H. B., Zamdborg L., Lam D., Gooding M., Sharp G. C.: Autosegmentation for thoracic radiation treatment planning: A grand challenge at aapm 2017. Med. Phys. 45 (10): 4568–4581, 2018

    Article  Google Scholar 

  22. Clark K., Vendt B., Smith K., Freymann J., Kirby J., Koppel P., Moore S., Phillips S., Maffitt D., Pringle M., Tarbox L., Fred P.: The cancer imaging archive (TCIA): Maintaining and operating a public information repository. J Digit Imaging 26 (6): 1045–1057, 2013

    Article  Google Scholar 

  23. Zhu Q., Du B., Yan P. (2020) Boundary-weighted domain adaptive neural network for prostate MR image segmentation. In: IEEE Transactions on Medical Imaging, vol. 39, no. 3, pp. 753–763. https://doi.org/10.1109/TMI.2019.2935018

  24. Nie D., Wang L., Gao Y., Lian J., Shen D.: STRAINet: Spatially varying stochastic residual adversarial networks for MRI pelvic organ segmentation. IEEE Trans Neural Netw. Learn. Syst. 30 (5): 1552–1564, 2019

    Article  Google Scholar 

  25. Jia H., Xia Y., Song Y., Zhang D., Huang H., Zhang Y., Cai W.: 3D APA-Net: 3D Adversarial pyramid anisotropic convolutional network for prostate segmentation in MR images. IEEE Trans. Med. Imaging PP (c): 1–1, 2019

    Google Scholar 

  26. Qin X., Zhang Z., Huang C., Dehghan M., Zaiane O.R., Jagersand M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognit. 106: 107404, 2020

    Article  Google Scholar 

  27. Sha Y. K. Github repository for Keras Unet Collection, found at https://github.com/yingkaisha/keras-unet-collection

  28. Qin X., Zhang Z., et al (2020) Github repository for U2-Net, found at https://github.com/xuebinqin/U-2-Net

Download references

Funding

The authors would like to thank Fundação para a Ciência e Tecnologia (FCT) for the PhD grant (reference SFRH/BD/146887/2019) awarded to the first author, which this work is a part of.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Manuel R. S. Tavares.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, G., Tavares, J.M.R.S. Versatile Convolutional Networks Applied to Computed Tomography and Magnetic Resonance Image Segmentation. J Med Syst 45, 79 (2021). https://doi.org/10.1007/s10916-021-01751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-021-01751-6

Keywords

Navigation