Skip to main content
Log in

COVE: Co-operative Virtual Network Embedding for Network Virtualization

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Network virtualization provides a promising solution for next-generation network management by allowing multiple isolated and heterogeneous virtual networks to coexist and run on a shared substrate network. A long-standing challenge in network virtualization is how to effectively and efficiently map these virtual nodes and links of heterogeneous virtual networks onto specific nodes and links of the shared substrate network, known as the Virtual Network Embedding (VNE) problem. Existing centralized VNE algorithms and distributed VNE algorithms both have advantages and disadvantages. In this paper, a novel cooperative VNE algorithm is proposed to coordinate centralized and distributed algorithms and unite their respective advantages and specialties. By leveraging the learning technology and topology decomposition, autonomous substrate nodes entrusted with detailed mapping solutions cooperate closely with the central controller with a global view and in charge of general management to achieve a successful embedding process. Besides a topology-aware resource evaluation mechanism and customized mapping management policies, Bloom filter is elaborately introduced to synchronize the mapping information within the substrate network, instead of flooding which generates massive communication overhead. Extensive simulations demonstrate that the proposed cooperative algorithm has acceptable and even better performance in terms of long-term average revenue and acceptance ratio than previous algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Esteves, R.P., Granville, L.Z., Boutaba, R.: On the management of virtual networks. IEEE Commun. Mag. 51(7), 80–88 (2013). doi:10.1109/MCOM.2013.6553682

    Article  Google Scholar 

  2. Xu, K., Yang, K., Stojmenovic, I.: Wired and wireless network virtualization. IEEE Netw. 26(5), 6–7 (2012). doi:10.1109/MNET.2012.6308068

    Article  Google Scholar 

  3. Khan, A., Zugenmaier, A., Jurca, D., Kellerer, W.: Network virtualization: a hypervisor for the Internet? IEEE Commun. Mag. 50(1), 136–143 (2012). doi:10.1109/MCOM.2012.6122544

    Article  Google Scholar 

  4. Azodolmolky, S., Wieder, P., Yahyapour, R.: Cloud computing networking: challenges and opportunities for innovations. IEEE Commun. Mag. 51(7), 54–62 (2013). doi:10.1109/MCOM.2013.6553678

    Article  Google Scholar 

  5. Bari, M.F., Boutaba, R., Esteves, R., Granville, L.Z., Podlesny, M., Rabbani, M.G., Zhani, M.F.: Data center network virtualization: a survey. IEEE Commun. Surv. Tutor. 15(2), 909–928 (2013). doi:10.1109/SURV.2012.090512.00043

    Article  Google Scholar 

  6. Mijumbi, R., Serrat, J., Gorricho, J., Bouten, N., De Turck, F., Boutaba, R.: Network function virtualization: state-of-the-art and research challenges. IEEE Commun. Surv. & Tutor. 18(1), 236–262 (2016). doi:10.1109/COMST.2015.2477041

    Article  Google Scholar 

  7. Han, B., Gopalakrishnan, V., Ji, L., Lee, S.: Network function virtualization: challenges and opportunities for innovations. IEEE Commun. Mag. 53(2), 90–97 (2015). doi:10.1109/MCOM.2015.7045396

    Article  Google Scholar 

  8. Kreutz, D., Ramos, F., Verissimo, P., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015). doi:10.1109/JPROC.2014.2371999

    Article  Google Scholar 

  9. Mell, P., Grance, T.: The NIST definition of cloud computing. Commun. ACM 53(6), 50 (2011)

    Google Scholar 

  10. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  11. Fischer, A., Botero, J.F., Till Beck, M., De Meer, H., Hesselbach, X.: Virtual network embedding: a survey. IEEE Commun. Surv. Tutor. 15(4), 1888–1906 (2013). doi:10.1109/SURV.2013.013013.00155

    Article  Google Scholar 

  12. Belbekkouche, A., Hasan, M., Karmouch, A.: Resource discovery and allocation in network virtualization. IEEE Commun. Surv. Tutor. 14(4), 1114–1128 (2012). doi:10.1109/SURV.2011.122811.00060

    Article  Google Scholar 

  13. Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding: substrate support for path splitting and migration. ACM SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008). doi:10.1145/1355734.1355737

    Article  Google Scholar 

  14. Chowdhury, M., Rahman, M.R., Boutaba, R.: ViNEYard: virtual network embedding algorithms with coordinated node and link mapping. IEEE/ACM Trans. Netw. (TON) 20(1), 206–219 (2012). doi:10.1109/TNET.2011.2159308

    Article  Google Scholar 

  15. Gao, X., Yu, H., Anand, V., Sun, G., Di, H.: A new algorithm with coordinated node and link mapping for virtual network embedding based on LP relaxation. In: Proceedings of Asia Communications and Photonics Conference and Exhibition, p. 79881Y. Optical Society of America (2010). doi:10.1109/ACP.2010.5682788

  16. Hu, Q., Wang, Y., Cao, X.: Resolve the virtual network embedding problem: a column generation approach. Proc. IEEE INFOCOM (2013). doi:10.1109/INFCOM.2013.6566805

    Google Scholar 

  17. Lischka, J., Karl, H.: A virtual network mapping algorithm based on subgraph isomorphism detection. In: Proceedings of the 1st ACM Workshop on Virtualized Infrastructure Systems and Architectures, pp. 81–88 (2009). doi:10.1145/1592648.1592662

  18. Zhou, Y., Li, Y., Jin, D., Su, L., Zeng, L.: A virtual network embedding scheme with two-stage node mapping based on physical resource migration. In: Proceedings of IEEE International Conference on Communication Systems, pp. 761–766 (2010). doi:10.1109/ICCS.2010.5686504

  19. Butt, N. F., Chowdhury, M., Boutaba, R.: Topology-awareness and reoptimization mechanism for virtual network embedding. In: Proceedings of Networking 2010: 9th International IFIP Tc6 Networking Conference, pp. 27–39 (2010). doi:10.1007/978-3-642-12963-6_3

  20. Cheng, X., Su, S., Zhang, Z., Shuang, K., Yang, F., Luo, Y., Wang, J.: Virtual network embedding through topology awareness and optimization. Comput. Netw. 56(6), 1797–1813 (2012). doi:10.1016/j.comnet.2012.01.022

    Article  Google Scholar 

  21. Zhang, S., Qian, Z., Wu, J., Lu, S.: An opportunistic resource sharing and topology-aware mapping framework for virtual networks. Proc. IEEE INFOCOM (2012). doi:10.1109/INFCOM.2012.6195630

    Google Scholar 

  22. Qing, S., Liao, J., Wang, J. Zhu, X., Qi, Q.: Hybrid virtual network embedding with K-core decomposition and time-oriented priority. In: Proceedings of IEEE International Conference on Communications (ICC), pp. 2695–2699 (2012). doi:10.1109/ICC.2012.6363761

  23. Razzaq, A., Siraj Rathore, M.: An approach towards resource efficient virtual network embedding. In: Proceedings of IEEE International Conference on Evolving Internet (INTERNET), pp. 68–73 (2010). doi:10.1109/INTERNET.2010.21

  24. Wang, Z., Han, Y., Lin, T., Xu, Y., Ci, S., Tang, H.: Topology-aware virtual network embedding based on closeness centrality. Front. Comput. Sci. 7(3), 446–457 (2013). doi:10.1007/s11704-013-2108-4

    Article  MathSciNet  Google Scholar 

  25. Liao, J., Feng, M., Li, T., Wang, J., Qing, S.: Topology-aware virtual network embedding using multiple characteristics. KSII Trans. Internet Inf. Syst. (TIIS) 8(1), 145–164 (2014). doi:10.3837/tiis.2014.01.009

    Article  Google Scholar 

  26. Rahman, M.R., Boutaba, R.: SVNE: survivable virtual network embedding algorithms for network virtualization. IEEE Trans. Netw. Serv. Manage. 10(2), 105–118 (2013). doi:10.1109/TNSM.2013.013013.110202

    Article  Google Scholar 

  27. Xiao, A., Wang, Y., Meng, L., Qiu, X., Li, W.: Topology-aware remapping to survive virtual networks against substrate node failures. In: Proceedings of IEEE Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1–6. (2013)

  28. Yu, H., Qiao, C., Anand, V., Liu, X., Di, H., Sun, G.: Survivable virtual infrastructure mapping in a federated computing and networking system under single regional failures. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), pp. 1–6 (2010). doi:10.1109/GLOCOM.2010.5683951

  29. Sun, G., Yu, H., Li, L., Anand, V., Di, H., Gao, X.: Efficient algorithms for survivable virtual network embedding. In: Proceedings of Asia Communications and Photonics Conference and Exhibition, International Society for Optics and Photonics, pp. 531–532 (2010). doi:10.1109/ACP.2010.5682613

  30. Yu, H., Anand, V., Qiao, C., Sun, G.: Cost efficient design of survivable virtual infrastructure to recover from facility node failures. In: Proceedings of IEEE International Conference on Communications (ICC), pp. 1–6 (2011). doi:10.1109/icc.2011.5962604

  31. Guo, T., Wang, N., Moessner, K., Tafazolli, R.: Shared backup network provision for virtual network embedding. In: Proceedings of IEEE International Conference on Communications (ICC), pp. 1–5 (2011). doi:10.1109/icc.2011.5963301

  32. Yeow, W.L., Westphal, C., Kozat, U.C.: Designing and embedding reliable virtual infrastructures. ACM SIGCOMM Comput. Commun. Rev. 41(2), 57–64 (2011). doi:10.1145/1971162.1971173

    Article  Google Scholar 

  33. Chen, Y., Li, J., Wo, T., Hu, C., Liu, W.: Resilient virtual network service provision in network virtualization environments. In: Proceedings of IEEE International Conference on Parallel and Distributed Systems (ICPADS), pp. 51–58 (2010). doi:10.1109/ICPADS.2010.26

  34. Infuhr, J., Stezenbach, D., Hartmann, M., Tutschku, K., Raidl, G. R.: Using optimized virtual network embedding for network dimensioning. In: Proceedings of IEEE Conference on Networked Systems (NetSys), 118–125 (2013). doi:10.1109/NetSys.2013.8

  35. Cai, Z., Liu, F., Xiao, N., Liu, Q., Wang, Z.: Virtual network embedding for evolving networks. In: Proceedings of IEEE global telecommunications conference (GLOBECOM), pp. 1–5 (2010). doi:10.1109/GLOCOM.2010.5683160

  36. Tran, P. N., Casucci, L., Timm-Giel, A.: Optimal mapping of virtual networks considering reactive reconfiguration. In: Proceedings of IEEE International Conference on Cloud Networking, pp. 35–40 (2012). doi:10.1109/CloudNet.2012.6483651

  37. Su, S., Zhang, Z., Liu, A.X., Cheng, X., Wang, Y., Zhao, X.: Energy-aware virtual network embedding. IEEE/ACM Trans. Netw. (TON) 22(5), 1607–1620 (2014). doi:10.1109/TNET.2013.2286156

    Article  Google Scholar 

  38. Xu, J., Kwiat, J.T.K., Zhang, W., Xue, G.: Enhancing survivability in virtualized data centers: a service-aware approach. IEEE J. Sel. Areas Commun. 31(12), 2610–2619 (2013). doi:10.1109/JSAC.2013.131203

    Article  Google Scholar 

  39. Rabbani, M.G., Zhani, M.F., Boutaba, R.: On achieving high survivability in virtualized data centers. IEICE Trans. Commun. 97(1), 10–18 (2014). doi:10.1587/transcom.E97.B.10

    Article  Google Scholar 

  40. Bari, M. F., Chowdhury, S. R., Ahmed, R., Boutaba, R.: On orchestrating virtual network functions. In: Proceedings of IEEE/ACM/IFIP CNSM (2015). doi:10.1109/CNSM.2015.7367338

  41. Ghaznavi, M., Khan, A., Shahriar, N., Alsubhi, N., Ahmed, R., Boutaba, R.: Elastic virtual network function placement. In: Proceedings of IEEE CloudNet (2015). doi:10.1109/CloudNet.2015.7335318

  42. Houidi, I., Louati, W., Zeghlache, D.: A distributed virtual network mapping algorithm. In: Proceedings of IEEE International Conference on Communications (ICC), pp. 5634–5640 (2008). doi:10.1109/ICC.2008.1056

  43. Marquezan, C. C., Granville, L. Z., Nunzi, G., Brunner, M.: Distributed autonomic resource management for network virtualization. In: Proceedings of IEEE Network Operations and Management Symposium (NOMS), pp. 463–470 (2010). doi:10.1109/NOMS.2010.5488490

  44. Shi, X., Wen, X., Sun, Y., Li, L., Ma, W.: A novel distributed VNet mapping algorithm. In: Proceedings of IEEE ICCT, pp. 311–316 (2012). doi:10.1109/ICCT.2012.6511235

  45. Ghazar, T., Samaan, N.: Hierarchical approach for efficient virtual network embedding based on exact subgraph matching. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), pp. 1–6 (2011). doi:10.1109/GLOCOM.2011.6133500

  46. Beck, M.T., Fischer, A., Botero, J.F., Linnhoffpopien, C., De Meer, H.: Distributed and scalable embedding of virtual networks. J. Netw. Comput. Appl. (2015). doi:10.1016/j.jnca.2015.06.012

    Google Scholar 

  47. Samuel, F., Chowdhury, M., Boutaba, R.: PolyViNE: policy-based virtual network embedding across multiple domains. J. Internet Serv. Appl. (2013). doi:10.1186/1869-0238-4-6

    Google Scholar 

  48. Dietrich, D., Rizk, A., Papadimitriou, P.: AutoEmbed: automated multi-provider virtual network embedding. In: Proceedings of ACM SIGCOMM, pp. 465–466 (2013). doi:10.1145/2486001.2491690

  49. Lv, B., Wang, Z., Huang, T., Chen, J., Liu, Y.: A hierarchical management architecture for virtual network mapping. In: Proceedings of International Conference on Internet Technology and Applications, pp. 1–4 (2010). doi:10.1109/ITAPP.2010.5566328

  50. Houidi, I., Louati, W., Ameur, W.B., Zeghlache, D.: Virtual network provisioning across multiple substrate networks. Comput. Netw. 55(4), 1011–1023 (2011). doi:10.1016/j.comnet.2010.12.011

    Article  MATH  Google Scholar 

  51. Esposito, F., Paola, D.D., Matta, I.: On distributed virtual network embedding with guarantees. IEEE/ACM Trans. Netw. (TON) (2014). doi:10.1109/TNET.2014.2375826

    Google Scholar 

  52. Amokrane, A., Zhani, M., Langar, R., Boutaba, R., Pujolle, G.: Greenhead: virtual data center embedding across distributed infrastructures. IEEE Trans. Cloud Comput. 8(1), 26–49 (2013). doi:10.1109/TCC.2013.5

    Google Scholar 

  53. Stezenbach, D., Hartmann, M., Tutschku, K.: Parameters and challenges for virtual network embedding in the future internet. In: Proceedings of IEEE Network Operations and Management Symposium (NOMS), pp. 1272–1278 (2012). doi:10.1109/NOMS.2012.6212063

  54. Liao, J., Feng, M., Qing, S., Li, T., Wang, J.: LIVE: learning and Inference for Virtual Network Embedding. SPRINGER J. Netw. Syst. Manag. 24(2), 227–256 (2016). doi:10.1007/s10922-015-9349-5

    Article  Google Scholar 

  55. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005). doi:10.1109/TKDE.2005.99

    Article  Google Scholar 

  56. Broder, A., Mitzenmacher, M.: Network applications of Bloom filters: a survey. Internet Math. 1(4), 485–509 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Virtual Network Embedding Simulator for Reference: https://github.com/minlanyu/embed

  58. Calvert, K.I., Doar, M.B., Zegura, E.W.: Modeling internet topology. IEEE Commun. Mag. 35(6), 160–163 (1997). doi:10.1109/35.587723

    Article  Google Scholar 

  59. Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an internetwork. Proc. IEEE INFOCOM 2, 594–602 (1996). doi:10.1109/INFCOM.1996.493353

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Raouf Boutaba and Prof. Reaz Ahmed from University of Waterloo, Canada for their precious comments and suggestions, which help to improve this paper. This work was jointly funded by: (1) National Natural Science Foundation of China (No. 61372120, 61421061, 61671079, 61471063); (2) Beijing Municipal Natural Science Foundation (No. 4152039); (3) Spanish Research Council (No: TIN2013-46883); (4) Regional Government of Madrid (No: S2013/ICE-2894) co-funded by FSE & FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, M., Liao, J., Qing, S. et al. COVE: Co-operative Virtual Network Embedding for Network Virtualization. J Netw Syst Manage 26, 79–107 (2018). https://doi.org/10.1007/s10922-017-9408-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-017-9408-1

Keywords

Navigation