Skip to main content

Advertisement

Log in

Multi-objective Task Scheduling to Minimize Energy Consumption and Makespan of Cloud Computing Using NSGA-II

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The utilization of cloud services has significantly increased due to the easiness in accessibility, better performance, and decrease in the high initial cost. In general, cloud users anticipate completing their tasks without any delay, whereas cloud providers yearn for reducing the energy cost, which is one of the major costs in the cloud service environment. However, reducing energy consumption increases the makespan and leads to customer dissatisfaction. So, it is essential to obtain a set of non-domination solutions for these multiple and conflicting objectives (makespan and energy consumption). In order to control the energy consumption efficaciously, the Dynamic Voltage Frequency Scaling system is incorporated in the optimization procedure and a set of non-domination solutions are obtained using Non-dominated Sorting Genetic Algorithm (NSGA-II). Further, the Artificial Neural Network (ANN), which is one of the most successful machine learning algorithms, is used to predict the virtual machines based on the characteristics of tasks and features of the resources. The optimum solutions obtained using the optimization process with the support of ANN and without the support of ANN are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

    Article  Google Scholar 

  2. Wu, C.M., Chang, R.S., Chan, H.Y.: A green energy-efficient scheduling algorithm using the DVFS technique for cloud datacenters. Future Gener. Comput. Syst. 37, 141–147 (2014)

    Article  Google Scholar 

  3. Kliazovich, D., Bouvry, P., Khan, S.U.: GreenCloud: a packet-level simulator of energy-aware cloud computing data centers. J. Supercomput. 62(3), 1263–1283 (2012)

    Article  Google Scholar 

  4. Jin, X., Zhang, F., Fan, L., Song, Y., Liu, Z.: Scheduling for energy minimization on restricted parallel processors. J. Parallel Distrib. Comput. 81, 36–46 (2015)

    Article  Google Scholar 

  5. Piątek, W., Oleksiak, A., Da Costa, G.: Energy and thermal models for simulation of workload and resource management in computing systems. Simul. Model. Pract. Theory 58, 40–54 (2015)

    Article  Google Scholar 

  6. Ding, Y., Qin, X., Liu, L., Wang, T.: Energy efficient scheduling of virtual machines in cloud with deadline constraint. Future Gener. Comput. Syst. 50, 62–74 (2015)

    Article  Google Scholar 

  7. Mustafa, S., Nazir, B., Hayat, A., Madani, S.A.: Resource management in cloud computing: taxonomy, prospects, and challenges. Comput. Electr. Eng. 47, 186–203 (2015)

    Article  Google Scholar 

  8. Lei, H., Zhang, T., Liu, Y., Zha, Y., Zhu, X.: SGEESS: smart green energy-efficient scheduling strategy with dynamic electricity price for data center. J. Syst. Softw. 108, 23–38 (2015)

    Article  Google Scholar 

  9. Pedram, M.: Energy-efficient datacenters. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(10), 1465–1484 (2012)

    Article  Google Scholar 

  10. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.: A taxonomy and survey of energy-efficient data centers and cloud computing systems. Adv. Comput. 82(2), 47–111 (2011)

    Article  Google Scholar 

  11. Quan, D.M., Mezza, F., Sannenli, D., Giafreda, R.: T-Alloc: a practical energy efficient resource allocation algorithm for traditional data centers. Future Gener. Comput. Syst. 28(5), 791–800 (2012)

    Article  Google Scholar 

  12. Castane, G.G., Nunez, A., Llopis, P., Carretero, J.: E-mc 2: a formal framework for energy modelling in cloud computing. Simul. Model. Pract. Theory 39, 56–75 (2013)

    Article  Google Scholar 

  13. Zheng, X., Cai, Y.: Energy-aware load dispatching in geographically located internet data centers. Sustain. Comput. Inform. Syst. 1(4), 275–285 (2013)

    Google Scholar 

  14. Wang, L., Zhang, F., Arjona Aroca, J., Vasilakos, A.V., Zheng, K., Hou, C., Li, D., Liu, Z.: GreenDCN: a general framework for achieving energy efficiency in data center networks. IEEE J. Sel. Areas Commun. 32(1), 4–15 (2014)

    Article  Google Scholar 

  15. Kim, N., Cho, J., Seo, E.: Energy-credit scheduler: an energy-aware virtual machine scheduler for cloud systems. Future Gener. Comput. Syst. 32, 128–137 (2014)

    Article  Google Scholar 

  16. Luo, L., Wu, W., Tsai, W.T., Di, D., Zhang, F.: Simulation of power consumption of cloud data centers. Simul. Model. Pract. Theory 39, 152–171 (2013)

    Article  Google Scholar 

  17. Hammadi, A., Mhamdi, L.: A survey on architectures and energy efficiency in data center networks. Comput. Commun. 40, 1–21 (2014)

    Article  Google Scholar 

  18. Rodero, I., Jaramillo, J., Quiroz, A., Parashar, M., Guim, F., Poole, S.: Energy-efficient application-aware online provisioning for virtualized clouds and data centers. In: Presented at the IEEE International Conference on Green Computing, pp. 31–45 (2010)

  19. Kessaci, Y., Melab, N., Talbi, E.G.: A multi-start local search heuristic for an energy efficient VMs assignment on top of the OpenNebula cloud manager. Future Gener. Comput. Syst. 36, 237–256 (2014)

    Article  Google Scholar 

  20. Luo, Y., Zhou, S.: Power consumption optimization strategy of cloud workflow scheduling based on SLA. WSEAS Trans. Syst. 13, 368–377 (2014)

    Google Scholar 

  21. Guo-ning, G., Ting-Lei, H., Shuai, G.: Genetic simulated annealing algorithm for task scheduling based on cloud computing environment. In: Presented at the International Conference on Intelligent Computing and Integrated Systems (2010)

  22. Priyanto, A.A., Adiwijaya, W.: Implementation of ant colony optimization algorithm on the project resource scheduling problem. Faculty of informatics, Institute of Technology Telkom, Bandung (2008)

    Google Scholar 

  23. Preve, N.: Balanced job scheduling based on ant algorithm for grid network. Int. J. Grid High Perform. Comput. 2(1), 34–50 (2010)

    Article  Google Scholar 

  24. Banerjee, S., Mukherjee, I., Mahanti, P.K.: Cloud computing initiative using modified ant colony framework. World Acad. Sci. Eng. Technol. 56, 221–224 (2009)

    Google Scholar 

  25. Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. In: Presented at the IEEE/ACM 12th International Conference on Grid Computing, pp. 26–33 (2011)

  26. Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In: Presented at the IEEE International Conference on Advanced Information Networking and Applications (AINA), pp. 400–407 (2010)

  27. Tayal, S.: Tasks scheduling optimization for the cloud computing systems. Int. J. Adv. Eng. Sci. Technol. 5(2), 111–115 (2011)

    MathSciNet  Google Scholar 

  28. Ajila, S.A., Bankole, A.A.: Using machine learning algorithms for cloud client prediction models in a web VM resource provisioning environment. Trans. Mach. Learn. Artif. Intell. 4(1), 28–51 (2016)

    Google Scholar 

  29. Bala, A., Chana, I.: Prediction-based proactive load balancing approach through VM migration. Eng. Comput. 32(4), 1–12 (2016)

    Article  Google Scholar 

  30. Kumar, N., Patel, P.: Resource management using feed forward ANN-PSO in cloud computing environment. In: Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies, p. 57 (2016)

  31. Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive resource provisioning in the cloud. Future Gener. Comput. Syst. 28(1), 155–162 (2012)

    Article  Google Scholar 

  32. Suresh, S., Sujit, P.B., Rao, A.K.: Particle swarm optimization approach for multi-objective composite box-beam design. Compos. Struct. 81(4), 598–605 (2007)

    Article  Google Scholar 

  33. Omkar, S.N., Khandelwal, R., Ananth, T.V.S., Naik, G.N., Gopalakrishnan, S.: Quantum behaved Particle Swarm Optimization (QPSO) for multi-objective design optimization of composite structures. Expert Syst. Appl. 36(8), 11312–11322 (2009)

    Article  Google Scholar 

  34. Omkar, S.N., Mudigere, D., Naik, G.N., Gopalakrishnan, S.: Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structures. Comput. Struct. 86(1), 1–14 (2008)

    Article  Google Scholar 

  35. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  36. Nicholas, P.E., Padmanaban, K.P., Babu, M.C.: Multi-objective optimization of laminated composite plate with diffused layer angles using non-dominated sorting genetic algorithm (NSGA-II). Adv. Compos. Lett. 23(4), 96–105 (2014)

    Google Scholar 

  37. Bolanos, R., Echeverry, M., Escobar, J.: A multiobjective non-dominated sorting genetic algorithm (NSGA-II) for the Multiple Traveling Salesman Problem. Decis. Sci. Lett. 4(4), 559–568 (2015)

    Article  Google Scholar 

  38. Hsu, C.H., Kremer, U.: The design, implementation, and evaluation of a compiler algorithm for CPU energy reduction. ACM SIGPLAN Not. 38(5), 38–48 (2003)

    Article  Google Scholar 

  39. Tao, F., LaiLi, Y., Xu, L., Zhang, L.: FC-PACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Trans. Ind. Inform. 9(4), 2023–2033 (2013)

    Article  Google Scholar 

  40. Demuth, H., Beale, M.: Neural Network Toolbox User’s Guide. The Mathworks, Natick (2000)

    Google Scholar 

  41. Yuen, K.V., Lam, H.F.: On the complexity of artificial neural networks for smart structures monitoring. Eng. Struct. 28(7), 977–984 (2006)

    Article  Google Scholar 

  42. Bolanca, T., Ukic, S., Peternel, I., Kusic, H., Bozic, A.L.: Artificial neural network models for advanced oxidation of organics in water matrix-comparison of applied methodologies. Indian J. Chem. Technol. 21(1), 21–29 (2014)

    Google Scholar 

  43. Kermanshahi, B., Iwamiya, H.: Up to year 2020 load forecasting using neural nets. Int. J. Electr. Power Energy Syst. 24(9), 789–797 (2002)

    Article  Google Scholar 

  44. Chakraborty, D.: Artificial neural network based delamination prediction in laminated composites. Mater. Des. 26(1), 1–7 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sathya Sofia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathya Sofia, A., GaneshKumar, P. Multi-objective Task Scheduling to Minimize Energy Consumption and Makespan of Cloud Computing Using NSGA-II. J Netw Syst Manage 26, 463–485 (2018). https://doi.org/10.1007/s10922-017-9425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-017-9425-0

Keywords

Navigation