Skip to main content
Log in

A Deep Learning Approach for Classifying Network Connected IoT Devices Using Communication Traffic Characteristics

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The Internet of Things can be considered a technological revolution and has successfully merged the physical world with the digital world. However, heterogeneous IoT devices with different functionalities impose new security challenges in cyberspace, including node forgery, unauthorized access to data and cyberattacks. It is essential to identify network-connected devices accurately and robustly, as well as their communication behaviours, to improve network security. Whilst necessary for communication, traditional identifiers using internet protocol /medium access control addresses have some constraints as device identifiers due to vulnerabilities against different attacks. To mitigate these issues, a deep learning-based device fingerprinting model has been proposed using these two features for the classification task, with 100 consecutive packets' information utilized to generate fingerprints as graphs. The proposed device fingerprinting model demonstrates over 99% and 95% precisions in distinguishing between known and unknown traffic traces and in identifying IoT and non-IoT traffic traces, respectively. 98.49% precision has also been demonstrated on an individual device classification task. These results are significant as the model can be utilized to effectively secure a resource-constrained IoT network, which despite its rapid growth of usage, is more prone to attack, partly due to its dependence on traditional explicit identification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Miettinen, M., Marchal, S., Asokan, N.: IoT Sentinel: automated device-type identification for security enforcement in IoT. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 2177–2184 (2017). https://doi.org/10.1109/ICDCS.2017.284.

  2. Ammar, N., Noirie, L., Tixeuil, S.: Network-protocol-based IoT Device Identification. In: 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), no. Section V, pp. 204–209 (2019). https://doi.org/10.1109/fmec.2019.8795318.

  3. Rahman, A., et al.: SmartBlock-SDN: an optimized blockchain-SDN framework for resource management in IoT. IEEE Access 9, 28361–28376 (2021). https://doi.org/10.1109/ACCESS.2021.3058244

    Article  Google Scholar 

  4. Hasan, M., Islam, M.M., Zarif, M.I.I., Hashem, M.M.A.: Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet of Things 7, 100059 (2019). https://doi.org/10.1016/j.iot.2019.100059

    Article  Google Scholar 

  5. Meidan, Y., et al.: N-baiot—network-based detection of IoT botnet attacks using deep autoencoders. IEEE Pervasive Comput. 17(3), 12–22 (2018)

    Article  Google Scholar 

  6. Charyyev, B., Gunes, M.H.: Detecting anomalous IoT traffic flow with locality sensitive hashes. In: 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings (2020). https://doi.org/10.1109/GLOBECOM42002.2020.9322559.

  7. Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P., Al-Nemrat, A., Venkatraman, S.: Deep learning approach for intelligent intrusion detection system. IEEE Access 7, 41525–41550 (2019). https://doi.org/10.1109/ACCESS.2019.2895334

    Article  Google Scholar 

  8. Kozik, R., Pawlicki, M., Choraś, M.: A new method of hybrid time window embedding with transformer-based traffic data classification in IoT-networked environment. Pattern Anal. Appl. 24(4), 1441–1449 (2021). https://doi.org/10.1007/s10044-021-00980-2

    Article  Google Scholar 

  9. Nascita, A., Cerasuolo, F., di Monda, D., Garcia, J.T.A., Montieri, A., Pescape, A.: Machine and Deep Learning Approaches for IoT Attack Classification, pp. 1–6 (2022). https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9797971.

  10. He, H., Sun, X., He, H., Zhao, G., He, L., Ren, J.: A Novel multimodal-sequential approach based on multi-view features for network intrusion detection. IEEE Access 7, 183207–183221 (2019). https://doi.org/10.1109/ACCESS.2019.2959131

    Article  Google Scholar 

  11. Alshboul, Y., Bsoul, A.A.R., al Zamil, M., Samarah, S.: Cybersecurity of smart home systems: sensor identity protection. J. Netw. Syst. Manag. (2021). https://doi.org/10.1007/s10922-021-09586-9

    Article  Google Scholar 

  12. Otoum, Y., Nayak, A.: AS-IDS: anomaly and signature based IDS for the internet of things. J. Netw. Syst. Manag. (2021). https://doi.org/10.1007/s10922-021-09589-6

    Article  Google Scholar 

  13. Afzal, S., Asim, M., Javed, A.R., Beg, M.O., Baker, T.: URLdeepDetect: a deep learning approach for detecting malicious URLs using semantic vector models. J. Netw. Syst. Manag. (2021). https://doi.org/10.1007/s10922-021-09587-8

    Article  Google Scholar 

  14. Yaseen, Q., Jararweh, Y.: Building an intelligent global IoT reputation and malicious devices detecting system. J. Netw. Syst. Manag. (2021). https://doi.org/10.1007/s10922-021-09611-x

    Article  Google Scholar 

  15. Tsimenidis, S., Lagkas, T., Rantos, K.: Deep learning in IoT intrusion detection. J. Netw. Syst. Manag. 30(1), 1–40 (2021). https://doi.org/10.1007/S10922-021-09621-9

    Article  Google Scholar 

  16. Song, Y., Huang, Q., Yang, J., Fan, M., Hu, A., Jiang, Y.: IoT device fingerprinting for relieving pressure in the access control. In: ACM International Conference Proceeding Series (2019).https://doi.org/10.1145/3321408.3326671

  17. Sivanathan, A., et al.: Classifying IoT devices in smart environments using network traffic characteristics. IEEE Trans. Mob. Comput. 18(8), 1745–1759 (2018). https://doi.org/10.1109/TMC.2018.2866249

    Article  Google Scholar 

  18. Chowdhury, R.R., Aneja, S., Aneja, N., Abas, E.: Network traffic analysis based IoT device identification. In: ACM International Conference Proceeding Series, pp. 79–89 (2020). https://doi.org/10.1145/3421537.3421545.

  19. Aneja, S., Bhargava, B.K., Aneja, N., Chowdhury, R.R.: Device fingerprinting using deep convolutional neural networks. IJCNDS 28(2), 171–198 (2022). https://doi.org/10.1504/ijcnds.2022.10041894

    Article  Google Scholar 

  20. Chowdhury, R.R., Abas, P.E.: A survey on device fingerprinting approach for resource-constraint IoT devices: comparative study and research challenges. Internet of Things (Netherlands) (2022). https://doi.org/10.1016/j.iot.2022.100632

    Article  Google Scholar 

  21. Jeong, Y.-S.: An efficient IoT Healthcare service management model of location tracking sensor. J. Digit. Converg. 14(3), 261–267 (2016). https://doi.org/10.14400/jdc.2016.14.3.261

    Article  Google Scholar 

  22. Sengan, S., Khalaf, O.I., Priyadarsini, S., Sharma, D.K., Amarendra, K., Hamad, A.A.: Smart healthcare security device on medical IoT using raspberry PI. Int. J. Reliab. Qual. E-Healthc. 11(3), 1–11 (2022). https://doi.org/10.4018/ijrqeh.289177

    Article  Google Scholar 

  23. Aume, C., Andrews, K., Pal, S., James, A., Seth, A., Mukhopadhyay, S.: TrackInk: an IoT-enabled real-time object tracking system in space. Sensors 22(2), 1–15 (2022). https://doi.org/10.3390/s22020608

    Article  Google Scholar 

  24. Ramnath, S., Javali, A., Narang, B., Mishra, P., Routray, S.K.: IoT based localization and tracking. In: IEEE International Conference on IoT and its Applications, ICIOT 2017 (2017). https://doi.org/10.1109/ICIOTA.2017.8073629.

  25. Xu, Q., Zheng, R., Saad, W., Han, Z.: Device fingerprinting in wireless networks: challenges and opportunities. IEEE Commun. Surv. Tutor. 18(1), 94–104 (2016). https://doi.org/10.1109/COMST.2015.2476338

    Article  Google Scholar 

  26. Robyns, P., Bonné, B., Quax, P., Lamotte, W.: Noncooperative 802.11 MAC layer fingerprinting and tracking of mobile devices. Secur. Commun. Netw. (2017). https://doi.org/10.1155/2017/6235484

    Article  Google Scholar 

  27. Gu, X., Wu, W., Gu, X., Ling, Z., Yang, M., Song, A.: Probe request based device identification attack and defense. Sensors (Switzerland) 20(16), 1–17 (2020). https://doi.org/10.3390/s20164620

    Article  Google Scholar 

  28. Wang, X., Zhang, Y., Zhang, H., Li, Y., Wei, X.: Radio frequency signal identification using transfer learning based on LSTM. Circuits Syst. Signal Process. 39(11), 5514–5528 (2020). https://doi.org/10.1007/s00034-020-01417-7

    Article  Google Scholar 

  29. Reising, D., Cancelleri, J., Loveless, T.D., Kandah, F., Skjellum, A.: Radio identity verification-based IoT security using RF-DNA fingerprints and SVM. IEEE Internet Things J 8(10), 8356–8371 (2021). https://doi.org/10.1109/JIOT.2020.3045305

    Article  Google Scholar 

  30. Yue, Y., Li, S., Legg, P., Li, F.: Deep learning-based security behaviour analysis in IoT environments: a survey. Secur. Commun. Netw. (2021). https://doi.org/10.1155/2021/8873195

    Article  Google Scholar 

  31. Aksoy, A., Gunes, M.H.: Automated iot device identification using network traffic. In: ICC 2019–2019 IEEE International Conference on Communications (ICC) , pp. 1–7 (2019). https://doi.org/10.1109/ICC.2019.8761559.

  32. Sivanathan, A.: et al.: Characterizing and classifying IoT traffic in smart cities and campuses. In: 2017 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2017, pp. 559–564 (2017). https://doi.org/10.1109/INFCOMW.2017.8116438.

  33. Rashid, M.M., Kamruzzaman, J., Hassan, M.M., Imam, T., Gordon, S.: Cyberattacks detection in IoT-based smart city applications using machine learning techniques. Int J Environ Res Public Health 17(24), 1–21 (2020). https://doi.org/10.3390/ijerph17249347

    Article  Google Scholar 

  34. Fan, L., et al.: An IoT device identification method based on semi-supervised learning. In: 16th International Conference on Network and Service Management (CNSM), pp. 1–7 (2020). https://doi.org/10.23919/CNSM50824.2020.9269044.

  35. Bia, L., Yao, L., Kanhere, S.S., Wang, X., Yang, Z.: Automatic device classification from network traffic streams of internet of things. In: 2018 IEEE 43rd Conference on Local Computer Networks (LCN), pp. 1–9 (2018)

  36. Kotak, J., Elovici, Y.: Iot device identification using deep learning. In: Advances in Intelligent Systems and Computing, AISC, vol. 1267, pp. 76–86 (2020). https://doi.org/10.1007/978-3-030-57805-3_8.

  37. Wang, S., et al.: Radio frequency fingerprint identification based on deep complex residual network. IEEE Access 8, 204417–204424 (2020). https://doi.org/10.1109/ACCESS.2020.3037206

    Article  Google Scholar 

  38. Jafari, H., Omotere, O., Adesina, D., Wu, H.-H., Qian, L.: Iot devices fingerprinting using deep learning. In: MILCOM 2018–2018 IEEE Military Communications Conference (MILCOM), pp. 1–9 (2018).

  39. Pinheiro, A.J., Bezerra, J.M., Burgardt, C.A.P., Campelo, D.R.: Identifying IoT devices and events based on packet length from encrypted traffic. Comput. Commun. 144(May), 8–17 (2019). https://doi.org/10.1016/j.comcom.2019.05.012

    Article  Google Scholar 

  40. Hui, S., Wang, H., Xu, D., Wu, J., Li, Y., Jin, D.: Distinguishing between smartphones and IoT devices via network traffic. IEEE Internet Things J. 4662(c), 1–16 (2021). https://doi.org/10.1109/JIOT.2021.3078879

    Article  Google Scholar 

  41. Chowdhury, R.R., Idris, A.C., Abas, P.E.: Internet of things device classification using transport and network layers communication traffic traces. Int. J. Comput. Digit. Syst. 12(1), 2210–3142 (2022). https://doi.org/10.12785/ijcds/120144

    Article  Google Scholar 

  42. Kumar, K.R., Hemanth, C., Kumar, C.A., Sahith, K.M., Prasanth, G.A.: IoT device identification through network traffic analysis. Int. Res. J. Modern. Eng. Technol. Sci. 02(06) (2020).

  43. Sivanathan, A.: IoT Behavioral Monitoring via Network Traffic Analysis. no. September (2020) [Online]. http://arxiv.org/abs/2001.10632

  44. Chowdhury, R.R.: Packet-level and IEEE 802.11 MAC frame-level analysis for IoT device identification device identification. Turk. J. Electr. Eng. Comput. Sci. 30, 1–1 (2022). https://doi.org/10.3906/elk-1300-0632.3915

    Article  Google Scholar 

  45. Chowdhury, R.R., Aneja, S., Aneja, N., Abas, P.E.: Packet-level and IEEE 802.11 MAC frame-level network traffic traces data of the D-Link IoT devices. Data Brief 37, 107208 (2021). https://doi.org/10.1016/j.dib.2021.107208

    Article  Google Scholar 

  46. Jo, W., Kim, S., Lee, C., Shon, T.: Packet preprocessing in CNN-based network intrusion detection system. Electronics (Switzerland) 9(7), 1–15 (2020). https://doi.org/10.3390/electronics9071151

    Article  Google Scholar 

  47. Singh, K., Malik, N.: CNN based approach for traffic sign recognition system. Adv. J. Grad. Res. 11(1), 23–33 (2021). https://doi.org/10.21467/ajgr.11.1.23-33

    Article  Google Scholar 

  48. Qing, G., Wang, H., Zhang, T.: Radio frequency fingerprinting identification for Zigbee via lightweight CNN. Phys. Commun. 44, 101250 (2021). https://doi.org/10.1016/j.phycom.2020.101250

    Article  Google Scholar 

  49. Shen, G., Zhang, J., Marshall, A., Peng, L., Wang, X.: Radio frequency fingerprint identification for LoRa using spectrogram and CNN. In: Proceedings - IEEE INFOCOM, May 2021, vol. 2021-May. https://doi.org/10.1109/INFOCOM42981.2021.9488793.

  50. Jafari, H., Omotere, O., Adesina, D., Wu, H.H., Qian, L.: IoT Devices Fingerprinting Using Deep Learning. Proceedings - IEEE Military Communications Conference MILCOM, vol. 2019-Octob, pp. 901–906 (2019). https://doi.org/10.1109/MILCOM.2018.8599826.

  51. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: Proceedings of 2017 International Conference on Engineering and Technology, ICET 2017, vol. 2018-January, pp. 1–6 (2018). https://doi.org/10.1109/ICENGTECHNOL.2017.8308186.

  52. Snider, E.J., Hernandez-Torres, S.I., Boice, E.N.: An image classification deep-learning algorithm for shrapnel detection from ultrasound images. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-12367-2

    Article  Google Scholar 

  53. Chang, Y.L., et al.: Consolidated convolutional neural network for hyperspectral image classification. Remote Sens. (Basel) (2022). https://doi.org/10.3390/rs14071571

    Article  Google Scholar 

  54. Wang, J., Xu, J., Zhu, J.: CNNs with Compact Activation Function, pp. 319–327 (2022). https://doi.org/10.1007/978-3-031-08754-7_40

  55. Parisi, L., Neagu, D., Ma, R., Campean, F.: Quantum ReLU activation for convolutional neural networks to improve diagnosis of Parkinson’s disease and COVID-19. Expert Syst. Appl. (2022). https://doi.org/10.1016/j.eswa.2021.115892

    Article  Google Scholar 

Download references

Acknowledgements

The authors are profoundly grateful to the Faculty of Integrated Technologies (FIT), Universiti Brunei Darussalam (UBD), for supporting this research work, as well as to UBD for awarding the UBD Graduate Scholarship (UGS) to the first author.

Funding

The authors received no financial support for this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and conception of this study. RRC wrote the original manuscript and performed experiments. PEA and ACI supervised and commented on the manuscript.

Corresponding author

Correspondence to Rajarshi Roy Chowdhury.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships which have influenced the work reported in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, R.R., Idris, A.C. & Abas, P.E. A Deep Learning Approach for Classifying Network Connected IoT Devices Using Communication Traffic Characteristics. J Netw Syst Manage 31, 26 (2023). https://doi.org/10.1007/s10922-022-09716-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-022-09716-x

Keywords

Navigation