Skip to main content
Log in

A Theorem on Strict Separability of Convex Polyhedra and Its Applications in Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We propose a new approach to the strict separation of convex polyhedra. This approach is based on the construction of the set of normal vectors for the hyperplanes, such that each one strict separates the polyhedra A and B. We prove the necessary and sufficient conditions of strict separability for convex polyhedra in the Euclidean space and present its applications in optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klee, V.: Maximal separation theorems for convex sets. Trans. Am. Math. Soc. 134(1), 133–147 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  2. Klee, V.L. Jr.: Strict separation of convex sets. Proc. Am. Math. Soc. 7(4), 735–737 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  3. Border, K.C.: Separating hyperplane theorems. 06.19::09.03, pp. 1–10 (2009). Available at http://www.hss.caltech.edu/kcb/Notes/SeparatingHyperplane.pdf

  4. Cook, J.: Separation of convex sets in linear topological spaces, pp. 1–14 (1988). Available at http://wwww.johncook.com/SeparationOfConvexSets.pdf

  5. Kupitz, Y.S.: Separation of a finite set in R d by spanned hyperplanes. Combinatorica 13(3), 249–258 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Mitchell, V.F., Dem’yanov, V.F., Malozev, V.N.: Finding the point of polyhedron closest to origin. SIAM J. Control 12, 19–26 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mangasarian, O.L.: Generalized Support vector machines. In: Advances in Large Margin Classifiers, pp. 135–146. MIT Press, Cambridge (2000). Available at ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps

    Google Scholar 

  8. Cendrowska, D.: Strict maximum separability of two finite sets: an algorithmic approach. Int. J. Appl. Math. Comput. Sci. 15(2), 292–304 (2005)

    MathSciNet  Google Scholar 

  9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (1995)

    Google Scholar 

  10. Franc, V., Hlavác̃, V.: An iterative algorithm learning the maximal margin classifier. Pattern Recogn. 36(9), 1985–1996 (2003)

    Article  MATH  Google Scholar 

  11. Jóźwik, A.: A recursive method for investigation of the linear separability of two sets. Pattern Recogn. 16(4), 429–431 (1983)

    Article  MATH  Google Scholar 

  12. Kozinec, B.N.: Recurrent algorithm separating convex hulls of two sets. In: Vapnik, V.N. (ed.) Learning Algorithms in Pattern Recognition. Soviet Radio, Moscow (1973)

    Google Scholar 

  13. Eremin, I.I.: Fier’s methods of strict separability of convex polyhedral sets. Izv. Vysš. Učebn. Zaved. Mat. 12, 33–43 (2006)

    MathSciNet  Google Scholar 

  14. Dem’yanov, V.F., Malozemov, V.N.: Introduction to Minimax. Nauka, Moscow (1972)

    Google Scholar 

  15. Vasil’ev, F.P.: Numerical Methods for Solving Extremum Problems. Nauka, Moscow (1980)

    Google Scholar 

  16. Sukharev, A.G., Timokhov, A.V., Fedorov, V.V.: A Course in Optimization Methods. Nauka, Moscow (1986)

    Google Scholar 

  17. Karmanov, V.G.: Mathematical Programming. Nauka, Moscow (1986)

    Google Scholar 

  18. Gabidullina, Z.R.: A theorem on separability of a convex polyhedron from zero point of the space and its applications in optimization. Izv. Vysš. Učebn. Zaved. Mat. 12, 21–26 (2006). (Engl. trasl. Russ. Math. (Iz. VUZ), 50(12), 18–23 (2006))

    MathSciNet  Google Scholar 

  19. Gavurin, M.K., Malozemov, V.N.: Extremum Problems with Linear Constraints. Publishing House of LGU, Leningrad (1984)

    Google Scholar 

  20. Bennett, K.P., Mangasarian, O.L.: Robust linear progamming discrimination of two linearly inseparable sets. Optim. Methods Softw. 1, 23–34 (1992)

    Article  Google Scholar 

  21. Bennett, K.P., Bredensteiner, E.J.: Duality and geometry in SVM classifiers. In: Proc. 17th Int. Conf. Machine Learning (2000)

    Google Scholar 

  22. Vapnik, V.: The Nature of Statistic Learning Theory. Springer, New York (2000)

    Google Scholar 

  23. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mitchell, V.F., Dem’yanov, V.F., Malozemov, V.N.: Finding the point of a polyhedron closest to origin. Vestn. Leningr. Univ. 19, 38–45 (1971)

    Google Scholar 

  25. Barbero, A., Lopez, J., Dorronsoro, J.R.: An accelerated MDM algorithm for SVM training. In: ESANN’2008 Proceedings, European Simposium on Artificial Neural Networks-Advances in Computational Intelligence and Learning, Brugers, Belgium (2008). Available at http://www.dise.ucl.ac.be/Proceeding/essann/essannpdf/es2008-91.pdf

    Google Scholar 

  26. Barbero, A., Lopez, J., Dorronsoro, J.R.: A 4-vector MDM Algorithm for Support Vector Training. Lecture Notes in Computer Sciences, vol. 5163. Springer, Berlin (2008)

    Google Scholar 

  27. Malozemov, V.N., Pevnii, A.B.: A fast algorithm for projecting of a point onto simplex. Vestn. SPbSU Ser. 1 1, 112–113 (1992)

    Google Scholar 

  28. Nurminskii, E.A.: Convergence of the suitable affine subspace for finding the least distance to a simplex. Comput. Math. Math. Phys. 45(11), 1915–1925 (2005)

    MathSciNet  Google Scholar 

  29. Gabidullina, Z.R.: Finite methods for finding of projection of the zero point of the space onto convex polyhedron. Abstracts for Presentation at Research Conference, “Mathematical Programming and Its Applications”. Yekaterinburg: UrO RAN (2007)

  30. Daugavet, V.A.: Numerical Methods of Quadratic Programming. SPb: St.Petersburg SU Publishing House, St. Petersburg (2004)

    Google Scholar 

  31. Ekland, I., Temam, R.: Convex Analysis and Variational Problems. Mir, Moscow (1979) (Russ. transl.)

    Google Scholar 

  32. Minu, M.: Mathematical Programming. Theory and Algorithms. Nauka, Moscow (1990) (Russ. transl.)

    Google Scholar 

  33. Dem’yanov, V.F.: Extremum Conditions and Variational Calculus. High School, Moscow (2005)

    Google Scholar 

  34. Zvang, J., Xiu, N.: Some recent advances in projection-type methods for variational inequalities. J. Comput. Appl. Math. 152(1–2), 559–585 (2003)

    MathSciNet  Google Scholar 

  35. Golub, G., Pereyra, V.: Separable nonlinear least squares: the variable projection method and its applications. Inverse Probl. 19(2), R1–R26 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Panin, V.M., Skopetzkii, V.V., Lavrina, T.V.: Models and methods for finite-dimensioned variational inequalities. Cybern. Syst. Anal. 6, 47–64 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. R. Gabidullina.

Additional information

Communicated by V.F. Dem’yanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabidullina, Z.R. A Theorem on Strict Separability of Convex Polyhedra and Its Applications in Optimization. J Optim Theory Appl 148, 550–570 (2011). https://doi.org/10.1007/s10957-010-9767-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9767-1

Keywords

Navigation