Skip to main content
Log in

Least-Squares Approximations in Geometric Buildup for Solving Distance Geometry Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this article, we investigate some theoretical and computational issues of the geometric buildup algorithm proposed by Sit, Wu and Yuan (Bull. Math. Biol. 71:1914–1933, 2009) for the solution of the distance geometry problem with sparse and inexact distances. This algorithm repeatedly uses a least-squares approximation to determine the position of an undetermined atom, using the distances from this atom to a set of previously determined ones. The least-squares approximation, obtained from the singular value decomposition of a distance-induced matrix, can find the best possible position for the atom, even if the distances have small errors, as they usually do in practice, and therefore make the geometric buildup algorithm more stable than its previous versions that relied on linear system solvers. We estimate its numerical errors and prove some of its key mathematical properties. We also present some numerical results with varying some of the parameters in the algorithm and show how they may be used to improve its performance and computational accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sit, A., Wu, Z., Yuan, Y.: A geometric buildup algorithm for the solution of the distance geometry problem using least-squares approximation. Bull. Math. Biol. 71, 1914–1933 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)

    MATH  Google Scholar 

  3. Havel, T.F.: Distance geometry: theory, algorithms, and chemical applications. In: Encyclopedia of Computational Chemistry. Wiley, New York (1998)

    Google Scholar 

  4. Huang, H.-X., Liang, Z.-A., Pardalos, P.: Some properties for the Euclidean distance matrix and positive semi-definite matrix completion problems. J. Glob. Optim. 25, 3–21 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21, 65–84 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings 17th Annual Allerton Conference on Communication, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  7. Kearsley, A., Tapia, R., Trosset, M.: The solution of the metric STRESS and SSTRESS problems in multidimensional scaling using Newton’s method. Comput. Comput. Stat. 13, 369–396 (1998)

    MATH  Google Scholar 

  8. Klock, H., Buhmann, J.M.: Multidimensional scaling by deterministic annealing. In: Pilillo, M., Hancock, E.R. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition. Lecture Notes in Computer Science, vol. 1223, pp. 246–260. Springer, Berlin (1997)

    Google Scholar 

  9. So, A., Ye, Y.: Theory of semidefinite programming for sensor network localization. Math. Program. 109, 367–384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, Z., Zheng, S., Boyd, S., Ye, Y.: Further relaxations of the SDP approach to sensor network localization. SIAM J. Optim. 19, 655–673 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zheng, Z.-Z., Luo, X.-L., Wu, Z.: A geometric buildup algorithm for the solution of the sensor network localization problem. Comput. Optim. Appl. (2010, accepted)

  12. Hou, J.T., Sims, G.E., Zhang, C., Kim, S.H.: A global representation of the protein fold space. Proc. Natl. Acad. Sci. USA 100, 2386–2390 (2003)

    Article  Google Scholar 

  13. Moré, J.J., Wu, Z.: ε-optimal solutions to distance geometry problems via global continuation. In: Pardalos, P.M., Shalloway, D., Xue, G. (eds.) Global Minimization of Non-convex Energy Functions: Molecular Conformation and Protein Folding, pp. 151–168. American Mathematical Society, Providence (1996)

    Google Scholar 

  14. Glunt, W., Hayden, T.L.: Improved convergence and speed for the distance geometry program APA to determine protein structure. Comput. Chem. 25, 223–230 (2001)

    Article  Google Scholar 

  15. Glunt, W., Hayden, T.L., Hong, S., Wells, J.: An alternating projection algorithm for computing the nearest Euclidean distance matrix. SIAM J. Matrix Anal. Appl. 11, 589–600 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformations from distance matrices. J. Comput. Chem. 14, 114–120 (1993)

    Article  Google Scholar 

  17. Hendrickson, B.: The molecule problem: exploiting structure in global optimization. SIAM J. Optim. 5, 835–857 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. J. Glob. Optim. 15, 219–234 (1999)

    Article  MATH  Google Scholar 

  19. Zou, Z.H., Bird, R.H., Schnabel, R.B.: A stochastic/perturbation global optimization algorithm for distance geometry problems. J. Glob. Optim. 11, 91–105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Le Thi, A.H., Pham Dinh, T.: Large scale molecular optimization from distance matrices by a d. c. optimization approach. SIAM J. Optim. 14, 77–114 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Biswas, P., Toh, K.C., Ye, Y.: A distributed SDP approach for large-scale noisy anchor-free graph realization with applications to molecular conformation. SIAM J. Sci. Comput. 30, 1251–1277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grosso, A., Locatelli, M., Schoen, F.: Solving molecular distance geometry problems by global optimization algorithms. Comput. Optim. Appl. 43, 23–37 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, H.-X., Pardalos, P.M.: A multivariate partition approach to optimization problems. Cybern. Syst. Anal. 38, 265–275 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, H.-X., Pardalos, P.M., Shen, Z.-J.: Equivalent formulations and necessary optimality conditions for the Lenard-Jones problem. J. Glob. Optim. 22, 97–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Glob. Optim. 22, 365–375 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dong, Q., Wu, Z.: A geometric buildup algorithm for solving the molecular distance geometry problem with sparse distance data. J. Glob. Optim. 26, 321–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, D., Wu, Z.: An updated geometric buildup algorithm for solving the molecular distance geometry problem with sparse distance data. J. Glob. Optim. 37, 661–673 (2007)

    Article  MATH  Google Scholar 

  28. Strang, G.: Linear Algebra and Its Applications, 3rd edn. Thomson Learning, Andover (1988)

    Google Scholar 

  29. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  30. Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. I Teil. Entwicklung willkürlichen Funktionen nach System vorgeschriebener. Math. Ann. 63, 433–476 (1907)

    Article  MathSciNet  Google Scholar 

  31. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwert linearer partieller Differentialgleichungen (mit einer Anwendung aufder Theorie der Hohlraumstrahlung). Math. Ann. 71, 441–479 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  32. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)

    Article  Google Scholar 

  33. Hoffman, A.J., Wielandt, H.W.: The variation of the spectrum of a normal matrix. Duke Math. J. 20, 37–39 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  34. Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 2, 205–224 (1965)

    MathSciNet  Google Scholar 

  35. Stewart, G.W.: On the early history of the singular value decomposition. SIAM Rev. 35, 551–566 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  37. Stewart, G.W.: Perturbation theory for the singular value decomposition. In: Vacarro, R.J. (ed.) SVD and Signal Processing, II. Elsevier, Amsterdam (1991)

    Google Scholar 

  38. http://www.pdb.org

  39. MATLAB 6.5, The MathWorks Inc. (2003). http://www.mathworks.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-long Luo.

Additional information

Communicated by P.M. Pardalos.

The authors thank Prof. P.M. Pardalos for pointing out the references [23, 24].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Xl., Wu, Zj. Least-Squares Approximations in Geometric Buildup for Solving Distance Geometry Problems. J Optim Theory Appl 149, 580–598 (2011). https://doi.org/10.1007/s10957-011-9806-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9806-6

Keywords

Navigation