Skip to main content
Log in

Modelling and Simulation of Milling Forces Using an Arbitrary Lagrangian–Eulerian Finite Element Method and Support Vector Regression

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A new method is presented to predict milling forces synthetically. Firstly, the 3D simulation model of the milling process is established using the arbitrary Lagrangian–Eulerian finite element method. And the simulated accuracy is calibrated by milling tests. Then the simulation model is taken as a virtual milling test system to replace extensive real milling experiments. Secondly, the specific cutting coefficients in the mechanistic milling forces model are identified by the support vector regression method using the training sample generated from the established virtual milling test system. Lastly, this methodology was validated by the slot milling operation of 2024-T3 aluminum sheets. The results show that this new approach can dramatically eliminate the experimental machining work and achieve good estimation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, F., Li, D.: Process planning and simulation strategies for perimeter milling of thin-walled flexible parts held by reconfigurable fixturing system. In: Werner, B. (ed.) Proceedings-3rd International Conference on Measuring Technology and Mechatronics Automation, vol. 2, pp. 922–926. IEEE Comput. Soc., Los Alamitos (2011)

    Google Scholar 

  2. Wang, L., Ke, Y., Huang, Z.: Experimental study on milling-force model in aviation aluminum-alloy. China Mech. Eng. 14(19), 1684–1686 (2003) (in Chinese)

    Google Scholar 

  3. Tandon, V., El-Mounayri, H.: A novel artificial neural networks force model for end milling. Int. J. Adv. Manuf. Technol. 18, 693–700 (2001)

    Article  Google Scholar 

  4. Zuperl, U., Cus, F.: Tool cutting force modeling in ball-end milling using multilevel perceptron. J. Mater. Process. Technol. 153–154, 268–275 (2004)

    Article  Google Scholar 

  5. Altintas, Y.: Manufacturing Automation, Metal Cutting, Machine Tool Vibration and CNC Design. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  6. Ozel, T., Altan, T.: Process simulation using finite element method–prediction of cutting forces, tool stresses and temperatures in high speed flat end milling. Int. J. Mach. Tools Manuf. 40, 713–738 (2000)

    Article  Google Scholar 

  7. Pantale, O., Bacaria, J.L., Dalverny, O., Rakotomalala, R., Caperaa, S.: 2D and 3D numerical models of metal cutting with damage effects. Comput. Methods Appl. Mech. Eng. 193, 4383–4399 (2004)

    Article  MATH  Google Scholar 

  8. Jalili Saffar, R., Razfar, M.R., Zarei, O., Ghassemieh, E.: Simulation of three-dimension cutting force and tool deflection in the end milling operation based on finite element method. Simul. Model. Pract. Theory 16, 1677–1688 (2008)

    Article  Google Scholar 

  9. Limido, J., Espinosa, C., Salaun, M., Lacome, J.L.: SPH method applied to high speed cutting modeling. Int. J. Mech. Sci. 49, 898–908 (2007)

    Article  Google Scholar 

  10. Lee, B.Y., Tarng, Y.S.: Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current. Int. J. Adv. Manuf. Technol. 15, 238–243 (1999)

    Article  Google Scholar 

  11. Altintas, Y.: Prediction of cutting forces and tool breakage in milling from feed driver current measurements. J. Eng. Ind. 114(4), 286–392 (1992)

    Article  Google Scholar 

  12. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  13. Vazquez, E., Walter, E.: Multi-output support vector regression. In: Van de Hof, P., Wahlberg, B., Weiland, S. (eds.) Proceedings of 13th IFAC Symposium on System Identification, Rotterdam, Netherlands, vol. 1, pp. 1195–1200 (2003)

    Google Scholar 

  14. Lee, Y., Oh, S., Choi, D.-H.: Design optimization using support vector regression. J. Mech. Sci. Technol. 22, 213–220 (2008)

    Article  Google Scholar 

  15. Yan, H., Zhang, X., Li, Y.d.: Relation between a support vector machine and the least square method. J. Tsinghua Univ. (Sci. Technol.) 41(9), 77–80 (2001) (in Chinese)

    MATH  Google Scholar 

  16. Fang, N.: A new quantitative sensitivity analysis of the flow stress of 18 engineering materials in machining. J. Eng. Mater. Technol. 127, 192–196 (2005)

    Article  Google Scholar 

  17. Milani, A.S., Dabboussi, W., Nemes, J.A., Abeyaratne, R.C.: An improved multi-objective identification of Johnson–Cook material parameters. Int. J. Impact Eng. 36, 294–302 (2006)

    Article  Google Scholar 

  18. Johnson, W.K., Cook, R.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proc. 7th International Symposium on Ballistics, pp. 541–547 (1983)

    Google Scholar 

  19. ABAQUS Inc.: ABAQUS Analysis Userś Manual. ABAQUS Inc. (2009)

  20. Van Leer, B.: Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23, 276–299 (1977)

    Article  MATH  Google Scholar 

  21. Leseur, D.R.: Experimental investigations of material models for Ti-6Al-4V titanium and 2024-T3 aluminum. Technical report DOT/FAA/AR-00/25, US Department of Transportation, Federal Aviation Administration (2000)

  22. Vaz, M. Jr., Owen, D.R.J., Kalhori, V., et al.: Modelling and simulation of machining processes. Arch. Comput. Methods Eng. 14, 173–204 (2007)

    Article  MATH  Google Scholar 

  23. Zorev, N.N.: Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting. In: International Research in Production Engineering, pp. 42–49. ASME, New York (1963)

    Google Scholar 

  24. Riviere-Lorphèvre, E., Filippi, E.: Mechanistic cutting force model parameters evaluation in milling taking cutter radial runout into account. Int. J. Adv. Manuf. Technol. 45, 8–15 (2009)

    Article  Google Scholar 

  25. Junz Wang, J.J., Chang, H.C.: Extracting cutting constants via harmonic force components for a general helical end mill. Int. J. Adv. Manuf. Technol. 24, 415–424 (2004)

    Article  Google Scholar 

  26. Wang, J., Jin, Q., Cao, L.: Support vector regression algorithm for multi-input multi-output systems. J. Tsinghua Univ. (Sci. Technol.) 47(s2), 1737–1741 (2007) (in Chinese)

    Google Scholar 

  27. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Li.

Additional information

Communicated by Konstantin A. Lurie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, F., Li, D. Modelling and Simulation of Milling Forces Using an Arbitrary Lagrangian–Eulerian Finite Element Method and Support Vector Regression. J Optim Theory Appl 153, 461–484 (2012). https://doi.org/10.1007/s10957-011-9927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9927-y

Keywords

Navigation