Skip to main content

Advertisement

Log in

The Extragradient Method for Solving Variational Inequalities in the Presence of Computational Errors

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In a Hilbert space, we study the convergence of the subgradient method to a solution of a variational inequality, under the presence of computational errors. Most results known in the literature establish convergence of optimization algorithms, when computational errors are summable. In the present paper, the convergence of the subgradient method for solving variational inequalities is established for nonsummable computational errors. We show that the subgradient method generates a good approximate solution, if the sequence of computational errors is bounded from above by a constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, Ya.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81, 23–35 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Barty, K., Roy, J.-S., Strugarek, C.: Hilbert-valued perturbed subgradient algorithms. Math. Oper. Res. 32, 551–562 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burachik, R.S., Grana Drummond, L.M., Iusem, A.N., Svaiter, B.F.: Full convergence of the steepest descent method with inexact line searches. Optimization 32, 137–146 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burachik, R.S., Lopes, J.O., Da Silva, G.J.P.: An inexact interior point proximal method for the variational inequality. Comput. Appl. Math. 28, 15–36 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Demyanov, V.F., Vasil’ev, L.V.: Nondifferentiable Optimization. Nauka, Moscow (1981)

    Google Scholar 

  7. Gwinner, J., Raciti, F.: On monotone variational inequalities with random data. J. Math. Inequal. 3, 443–453 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huebner, E., Tichatschke, R.: Relaxed proximal point algorithms for variational inequalities with multi-valued operators. Optim. Methods Softw. 23, 847–877 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kaplan, A., Tichatschke, R.: Bregman-like functions and proximal methods for variational problems with nonlinear constraints. Optimization 56, 253–265 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kiwiel, K.C.: Convergence of approximate and incremental subgradient methods for convex optimization. SIAM J. Optim. 14, 807–840 (2003)

    Article  MathSciNet  Google Scholar 

  11. Konnov, I.V.: A descent method with inexact linear search for mixed variational inequalities. Russ. Math. 53, 29–35 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mainge, P.-E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonom. Mat. Metody 12, 747–756 (1976)

    MATH  Google Scholar 

  14. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I–II. Springer, New York (2003)

    Google Scholar 

  15. Zaslavski, A.J.: The projected subgradient method for nonsmooth convex optimization in the presence of computational errors. Numer. Funct. Anal. Optim. 31, 616–633 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zaslavski, A.J.: Convergence of a proximal method in the presence of computational errors in Hilbert spaces. SIAM J. Optim. 20, 2413–2421 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Zaslavski.

Additional information

Communicated by Vladimir F. Dem’yanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaslavski, A.J. The Extragradient Method for Solving Variational Inequalities in the Presence of Computational Errors. J Optim Theory Appl 153, 602–618 (2012). https://doi.org/10.1007/s10957-011-9975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9975-3

Keywords

Navigation