Skip to main content
Log in

Numerical Solution of Arbitrary-Order Ordinary Differential and Integro-Differential Equations with Separated Boundary Conditions Using Optimal Control Technique

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new method for solving arbitrary order ordinary differential equations and integro-differential equations of Fredholm and Volterra kind is presented. In the proposed method, these equations with separated boundary conditions are converted to a parametric optimization problem subject to algebraic constraints. Finally, control and state variables will be approximated by a Chebychev series. In this method, a new idea has been used, which offers us the ability of applying the mentioned method for almost all kinds of ordinary differential and integro-differential equations with different types of boundary conditions. The accuracy and efficiency of the proposed numerical technique have been illustrated by solving some test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Gindy, T.M., El-Hawary, H.M., Salim, M.S., El-Kady, M.: A Chebychev approximation for solving optimal control problems. Comput. Math. Appl. 29(6), 35–45 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. El-Kady, M., Elbarbary, E.M.: A Chebychev expansion method for solving nonlinear optimal control problems. J. Appl. Math. Comput. 129, 171–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Siddiqi, S.S., Twizell, E.H.: Spline solutions of linear eighth-order boundary-value problems. Comput. Methods Appl. Mech. Eng. 131, 309–325 (1996)

    Article  MATH  Google Scholar 

  4. El-Kady, M., El-Barbary, E.M.: Optimal control approach for system of ordinary differential equations. Appl. Math. Comput. 135, 277–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Loghmani, G.B.: Application of least square method to arbitrary-order problems with separated boundary conditions. J. Comput. Appl. Math. 222, 500–510 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Malanowski, K., Maurer, H.: Sensitivity analysis for state constrained optimal control problems. Discrete Contin. Dyn. Syst. 4, 241–272 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Maure, H., Pesch, H.J.: Solution differentiability for parametric nonlinear control-state constraints. J. Optim. Theory Appl. 23, 285–309 (1995)

    Article  Google Scholar 

  8. Maurer, H., Pesch, H.J.: Solution differentiability for parametric nonlinear control problems. SIAM J. Control Optim. 32, 1542–1554 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rosch, A., Troltzsch, F.: An optimal control problem arising from the identification of nonlinar heats transfer laws. Arch. Control Sci. 1(3–4), 183–195 (1992)

    MathSciNet  Google Scholar 

  10. El-Gendi, S.E.: Chebychev solutions of differential, integral and integro-differential equations. Comput. J. 12, 282–287 (1969)

    MathSciNet  MATH  Google Scholar 

  11. Van Dooren, R., Vlassenbroeck, J.: A Chebychev technique for solving nonlinear optimal control problems. IEEE Trans. Autom. Control 33(4), 333–339 (1988)

    Article  MATH  Google Scholar 

  12. El-Gindy, T.M., Salim, M.S.: Penalty function with partial quadratic interpolation technique in the constrained optimization problems. J. Inist. Math. Comput. Sci. 3(1), 85–90 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Kelly, H.J.: Methods of gradients. In: Leitman, G. (ed.) Optimization Techniques, pp. 205–254. Academic Press, London (1962)

    Google Scholar 

  14. Walsh, H.J.: Methods of Optimization. Wiley, London (1975)

    MATH  Google Scholar 

  15. Luenberger, D.G.: Linear and Nonlinear Programming. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  16. Siddiqi, S.S., Twizell, E.H.: Spline solutions of linear twelfth-order boundary value problems. J. Comput. Appl. Math. 78, 371–390 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wazwaz, A.M.: Approximate solutions to Boundary value problems of higher order by the modified decomposition method. Int. J. Comput. Math. Appl. 40, 679–691 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maleknejad, K., Mahmoudi, Y.: Numerical solution of integro-differential equations by using hybrid Taylor and Block–Palse functions. Far East J. Math. Sci. (FJMS) 9(2), 203–213 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Berenguer, M.I., Fortes, M.A., Garralda Guillem, A.I., Ruiz Galan, M.: Linear Volterra integro-differential equation and Schauder bases. Appl. Math. Comput. 159, 495–507 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maleknejad, K., Mahmoudi, Y.: Taylor polynomial solution of high-order nonlinear Volterra Fredholm integro-differential equations. Appl. Math. Comput. 145, 641–653 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the referee(s) for their valuable comments and suggestions for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Loghmani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarepour, M., Loghmani, G.B. Numerical Solution of Arbitrary-Order Ordinary Differential and Integro-Differential Equations with Separated Boundary Conditions Using Optimal Control Technique. J Optim Theory Appl 154, 933–948 (2012). https://doi.org/10.1007/s10957-012-0019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0019-4

Keywords

Navigation