Skip to main content
Log in

Risk-Return Trade-off with the Scenario Approach in Practice: A Case Study in Portfolio Selection

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the scenario approach for chance constrained programming problems. Building on existing theoretical results, effective and readily applicable methodologies to achieve suitable risk-return trade-offs are developed in this paper. Unlike other approaches, that require solving non-convex optimization problems, our methodology consists of solving multiple convex optimization problems obtained by sampling and removing some of the constraints. More specifically, two constraint removal schemes are introduced, one greedy and the other randomized, and a comparison between them is provided in a detailed computational study in portfolio selection. Other practical aspects of the procedures are also discussed. The removal schemes proposed in this paper are generalizable to a wide range of practical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that the dimension of our problem is actually n, since once percentages x 1,…,x n are allocated, x n+1 must become the remaining unallocated percentage.

  2. http://finance.yahoo.com/.

References

  1. Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17, 969–996 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dentcheva, D., Prékopa, A., Ruszczynski, A.: Concavity and efficient points of discrete distributions in probabilistic programming. Math. Program. 89, 55–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Prékopa, A.: Dual method for the solution of a one-stage stochastic programming problem with random rhs obeying a discrete probability distribution. Math. Methods Oper. Res. 34, 441–461 (1990)

    Article  MATH  Google Scholar 

  4. Tanner, M.W., Ntaimo, L.: IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation. Eur. J. Oper. Res. 207, 290–296 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Luedtke, J., Ahmed, S., Nemhauser, G.L.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122, 247–272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132, 31–56 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lejeune, M.: Pattern-based modeling and solution of probabilistically constrained optimization problems. SPEPS 2010, 5 (2010). http://edoc.hu-berlin.de/browsing/speps/

    Google Scholar 

  8. Calafiore, G., Campi, M.C.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102, 25–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Campi, M.C., Garatti, S.: The exact feasibility of randomized solutions of robust convex programs. SIAM J. Optim. 19, 1211–1230 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Campi, M.C., Garatti, S.: A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. J. Optim. Theory Appl. 148, 257–280 (2010)

    Article  MathSciNet  Google Scholar 

  11. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  12. Pagnoncelli, B.K., Ahmed, S., Shapiro, A.: Computational study of a chance constrained portfolio selection problem. J. Optim. Theory Appl. 142, 399–416 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25, 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  15. Shapiro, A., Philpott, A.: A tutorial on stochastic programming. Manuscript. Available at www2.isye.gatech.edu/~ashapiro/publications.html (2007)

  16. Wand, Y., Chen, Z., Zhang, K.: A chance-constrained portfolio selection problem under t-distribution. Asia-Pac. J. Oper. Res. 24, 535–556 (2007)

    Article  MathSciNet  Google Scholar 

  17. Lejeune, M.: A var Black-Litterman model for the construction of absolute return fund-of-funds. Quant. Finance 11, 1489–1501 (2011)

    Article  MathSciNet  Google Scholar 

  18. Nemirovski, A., Shapiro, A.: Scenario approximations of chance constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design under Uncertainty, pp. 3–47. Springer, London (2006)

    Chapter  Google Scholar 

  19. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Law, A., Kelton, W.D.: Simulation Modeling and Analysis. McGraw-Hill, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Pagnoncelli.

Additional information

Communicated by Johannes O. Royset.

This research was funded by ANILLO Grant ACT-88 and Basal project CMM, Universidad de Chile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagnoncelli, B.K., Reich, D. & Campi, M.C. Risk-Return Trade-off with the Scenario Approach in Practice: A Case Study in Portfolio Selection. J Optim Theory Appl 155, 707–722 (2012). https://doi.org/10.1007/s10957-012-0074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0074-x

Keywords

Navigation