Skip to main content
Log in

Optimal Mean-Variance Problem with Constrained Controls in a Jump-Diffusion Financial Market for an Insurer

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the optimal investment and optimal reinsurance problem for an insurer under the criterion of mean-variance. The insurer’s risk process is modeled by a compound Poisson process and the insurer can invest in a risk-free asset and a risky asset whose price follows a jump-diffusion process. In addition, the insurer can purchase new business (such as reinsurance). The controls (investment and reinsurance strategies) are constrained to take nonnegative values due to nonnegative new business and no-shorting constraint of the risky asset. We use the stochastic linear-quadratic (LQ) control theory to derive the optimal value and the optimal strategy. The corresponding Hamilton–Jacobi–Bellman (HJB) equation no longer has a classical solution. With the framework of viscosity solution, we give a new verification theorem, and then the efficient strategy (optimal investment strategy and optimal reinsurance strategy) and the efficient frontier are derived explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4(1), 141–183 (1973)

    Article  MathSciNet  Google Scholar 

  2. Zhou, C.: A jump-diffusion approach to modeling credit risk and valuing defaultable securities (March 1997). Available at SSRN: http://ssrn.com/abstract=39800 or http://dx.doi.org/10.2139/ssrn.39800

  3. Schmidt, T., Stute, W.: Shot-noise processes and the minimal martingale measure. Stat. Probab. Lett. 77(12), 1332–1338 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Browne, S.: Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin. Math. Oper. Res. 20(4), 937–958 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hipp, C., Plum, M.: Optimal investment for insurers. Insur. Math. Econ. 27(2), 215–228 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gaier, J., Grandits, P., Schachermayer, W.: Asymptotic ruin probabilities and optimal investment. Ann. Appl. Probab. 13(3), 1054–1076 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, Z., Xia, J., Zhang, L.: Optimal investment for an insurer: the martingale approach. Insur. Math. Econ. 40(2), 322–334 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Schmidli, H.: On minimizing the ruin probability by investment and reinsurance. Ann. Appl. Probab. 12(3), 890–907 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bäuerle, N.: Benchmark and mean-variance problems for insurers. Math. Methods Oper. Res. 62(1), 159–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bai, L., Zhang, H.: Dynamic mean-variance problem with constrained risk control for the insurers. Math. Methods Oper. Res. 68(1), 181–205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  12. Merton, R.C.: An analytical derivation of the efficient portfolio frontier. J. Financ. Quant. Anal. 7(4), 1851–1872 (1972)

    Article  Google Scholar 

  13. Zhou, X.Y., Li, D.: Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl. Math. Optim. 42(1), 19–33 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, X., Zhou, X.Y., Lim, A.E.B.: Dynamic mean-variance portfolio selection with no-shorting constraints. SIAM J. Control Optim. 40(5), 1540–1555 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lim, A.E.B., Zhou, X.Y.: Mean-variance portfolio selection with random parameters in a complete market. Math. Oper. Res. 27(1), 101–120 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yong, J.M., Zhou, X.Y.: Stochastic Controls: Hamilton Systems and HJB Equations. Springer, New York (1999)

    Book  MATH  Google Scholar 

  17. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, Berlin, New York (1993)

    MATH  Google Scholar 

  18. Delong, L., Gerrard, R.: Mean-variance portfolio selection for a non-life insurance company. Math. Methods Oper. Res. 66(2), 339–367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou, X.Y., Yong, J., Li, X.: Stochastic verification theorems within the framework of viscosity solutions. SIAM J. Control Optim. 35(1), 243–253 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1968)

    Google Scholar 

  21. Brémaud, P.: Point Processes and Queues. Springer, New York (1981)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 11171164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junna Bi.

Additional information

Communicated by Xiao Qi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, J., Guo, J. Optimal Mean-Variance Problem with Constrained Controls in a Jump-Diffusion Financial Market for an Insurer. J Optim Theory Appl 157, 252–275 (2013). https://doi.org/10.1007/s10957-012-0138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0138-y

Keywords

Navigation