Skip to main content
Log in

Computation of Correlated Equilibrium with Global-Optimal Expected Social Welfare

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose an algorithm which computes the correlated equilibrium with global-optimal (i.e., maximum) expected social welfare for single stage polynomial games. We first derive tractable primal/dual semidefinite programming (SDP) relaxations for an infinite-dimensional formulation of correlated equilibria. We give an asymptotic convergence proof, which ensures solving the sequence of relaxations leads to solutions that converge to the correlated equilibrium with the highest expected social welfare. Finally, we give a dedicated sequential SDP algorithm and demonstrate it in a wireless application with numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In general, the algorithm presented in this paper handles multivariate strategies.

  2. A formal characterization of correlated equilibria is mentioned in Theorem 2.1.

  3. Since 〈V,S〉=〈(V T+V)/2,S〉 holds for arbitrary V and symmetric S, the arbitrary V can be treated as symmetric due to Proposition A.1 in Appendix.

References

  1. Lasaulce, S., Debbah, M., Altman, E.: Methodologies for analyzing equilibria in wireless games. IEEE Signal Process. Mag. 26(5), 41–52 (2009)

    Article  Google Scholar 

  2. Yu, W.: Competition and cooperation in multiuser communication environments. Ph.D. thesis, Stanford University (2002)

  3. Popescu, O., Popescu, D.C., Rose, C.: Simultaneous water filling in mutually interfering systems. IEEE Trans. Wirel. Commun. 6(3), 1102–1113 (2007)

    Article  Google Scholar 

  4. Scutari, G., Palomar, D.P., Barbarossa, S.: The MIMO iterative waterfilling algorithm. IEEE Trans. Signal Process. 57(5), 1917–1935 (2009)

    Article  Google Scholar 

  5. Aumann, R.J.: Subjectivity and correlation in randomized strategies. J. Math. Econ. 1(1), 67–96 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aumann, R.J.: Correlated equilibrium as an expression of Bayesian rationality. Econometrica 55(1), 1–18 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hart, S., Schmeidler, D.: Existence of correlated equilibria. Math. Oper. Res. 14(1), 18–25 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Stoltz, G., Lugosi, G.: Learning correlated equilibria in games with compact sets of strategies. Games Econ. Behav. 59(1), 187–208 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kakade, S., Kearns, M., Langford, J., Ortiz, L.: Correlated equilibria in graphical games. In: Proceedings of the 4th ACM Conference on Electronic Commerce (EC), New York, USA, pp. 42–47 (2003)

    Chapter  Google Scholar 

  10. Papadimitriou, C.H., Roughgarden, T.: Computing correlated equilibria in multi-player games. J. ACM 55(3), 1–29 (2008)

    MathSciNet  Google Scholar 

  11. Ortiz, L., Schapire, R., Kakade, S.: Maximum entropy correlated equilibria. In: Proceedings of the 11th International Conference on AI and Stats., San Juan, Puerto Rico, pp. 347–354 (2007)

    Google Scholar 

  12. Krishnamurthy, V., Maskery, M., Yin, G.: Decentralized adaptive filtering algorithms for sensor activation in an unattended ground sensor network. IEEE Trans. Signal Process. 56(12), 6086–6101 (2008)

    Article  MathSciNet  Google Scholar 

  13. Belmega, E.V., Lasaulce, S., Debbah, M., Hjørungnes, A.: Learning distributed power allocation policies in MIMO channels. In: Proceedings of the 18th European Signal Processing Conference (EUSIPCO), Aalborg, Denmark (2010), Invited paper

    Google Scholar 

  14. Hart, S., Mas-Colell, A.: A simple adaptive procedure leading to correlated equilibrium. Econometrica 68(5), 1127–1150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stein, N.D., Ozdaglar, A., Parrilo, P.: Computing correlated equilibria of polynomial games via adaptive discretization. In: Proceedings of the 47th IEEE Conference on Decision and Control (CDC), Cancun, Mexico, pp. 4474–4478 (2008)

    Google Scholar 

  16. Stein, N.D., Parrilo, P.A., Ozdaglar, A.: Correlated equilibria in continuous games: Characterization and computation. Games Econ. Behav. 71(2), 436–455 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Curto, R., Fialkow, L.: The truncated complex K-moment problem. Trans. Am. Math. Soc. 352(6), 2825–2855 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) The IMA Volumes in Math. and Its Appln. Emerging Applications of Algebraic Geometry, vol. 149, pp. 157–270. Springer, Berlin (2009)

    Google Scholar 

  19. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2000)

    Article  MathSciNet  Google Scholar 

  20. Scherer, C.W., Hol, C.W.J.: Matrix sum-of-squares relaxations for robust semi-definite programs. Math. Program. 107(1), 189–211 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yu, W., Rhee, W., Boyd, S., Cioffi, J.M.: Iterative water-filling for Gaussian vector multiple-access channels. IEEE Trans. Inf. Theory 50(1), 145–152 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fook Wai Kong.

Additional information

Communicated by David G. Luenberger.

Appendix: Proofs

Appendix: Proofs

Proposition A.1

Given l∈ℕ, m∈ℕ, \(A \in \mathbb{S}^{l m}\), and \(B \in \mathbb{S}^{m}\), (A,B) l :=tr l (A T(IB))∈ℝl×l is symmetric.

Proof

Let A be partitioned into the block matrix

$$\left[\begin{array}{c@{\quad}c@{\quad}c}A_{11} & A_{ij} & \ldots \\A_{ji} & A_{22} & \ldots \\\vdots & \vdots & \ddots \end{array}\right]$$
(48)

where A ij ∈ℝm×m with (i,j)∈K l . Let IB∈ℝlm×lm be partitioned into the block matrix

$$\left[\begin{array}{c@{\quad}c@{\quad}c}B & 0 & \ldots \\0 & B & \ldots \\\vdots & \vdots & \ddots \end{array}\right].$$
(49)

Applying block matrix multiplication, we get

$$\mathrm{tr}_{l}\bigl(A^T(I \otimes B)\bigr) =\left[\begin{array}{c@{\quad}c@{\quad}c}\mathrm{tr}(A_{11}B) & \mathrm{tr}(A_{ij}B) & \ldots \\\mathrm{tr}(A_{ji}B) & \mathrm{tr}(A_{22}B) & \ldots \\\vdots & \vdots & \ddots \end{array}\right].$$
(50)

Since A and B are symmetric as given, \(A_{ij} = A_{ji}^{T}\) implies tr(A ij B)=tr(A ji B). □

Proposition A.2

Given m∈ℕ, n∈ℕ, \(A \in \mathbb{S}^{m}\), \(B\in \mathbb{S}^{n}\), and column selection matrices namely P∈ℝm×n and Q∈ℝm×n, we haveP T AQ,B〉=〈A,PBQ T〉.

Proof

It is well known that given arbitrary C∈ℝm×n and D∈ℝn×m, tr(CD)=tr(DC). Since AQ∈ℝm×n, PB∈ℝm×n, PBQ T∈ℝm×m, the following can be derived:

 □

Proposition A.3

Given ρ∈ℕ, l∈ℕ, permutation matrix Δ∈ℝ×, positive semidefinite \(Z \in \mathbb{S}^{l \rho}\), and constant \(\varLambda \in \mathbb{S}^{\rho}\), there exist column selection matrices P k ∈ℝ×ρ and Q k ∈ℝ×ρ such that

$$\big\langle \bigl[ \varDelta ^T Z \varDelta \bigr]_{k},\varLambda \big\rangle =\big\langle Z, \varDelta P_{k} \varLambda Q_{k}^T \varDelta ^T \big\rangle, \quad k \in \mathbf{K}_{l}.$$

Proof

We first expand 〈[Δ T ] k ,Λ〉,

$$\big\langle \bigl[ \varDelta ^T Z \varDelta \bigr]_{k},\varLambda \big\rangle = \big\langle P_{k}^T \varDelta ^T Z \varDelta Q_{k}, \varLambda \big\rangle = \big\langle (\varDelta P_{k})^T Z \varDelta Q_{k} , \varLambda \big\rangle.$$

By Proposition (A.2), we have

$$\big\langle (\varDelta P_{k})^T Z \varDelta Q_{k}, \varLambda \big\rangle = \big\langle Z , \varDelta P_{k} \varLambda (\varDelta Q_{k})^T \big\rangle = \big\langle Z , \varDelta P_{k} \varLambda Q_{k}^T \varDelta ^T \big\rangle.$$

 □

Proposition A.4

Given ρ∈ℕ, l∈ℕ, permutation matrix Δ∈ℝ×, positive semidefinite \(Z \in \mathbb{S}^{l \rho}\), constant \(\varLambda \in \mathbb{S}^{\rho}\), and an arbitrary \(V \in \mathbb{S}^{l}\), there exist column selection matrices P k ∈ℝ×ρ, Q k ∈ℝ×ρ such that

$$\big\langle V, \bigl(\varDelta ^T Z \varDelta , \varLambda \bigr)_{l}\big\rangle = \sum_{k \in \mathbf{K}_l} [ V ]_k \big\langle \varDelta E_k \otimes \varLambda \varDelta ^T, Z \big\rangle.$$
(51)

Proof

We first expand (Δ T ,Λ) l ,

(52)

By Proposition A.3, (52) becomes

$$\left[\begin{array}{c@{\quad}c@{\quad}c}\langle Z, \varDelta P_{1,1} \varLambda Q_{1,1}^T \varDelta ^T\rangle & \cdots & \cdots \\\cdots & \langle Z, \varDelta P_{k} \varLambda Q_{k}^T \varDelta ^T \rangle & \cdots \\\cdots & \cdots & \cdots \end{array}\right].$$
(53)

Therefore, we have \(\langle V, (\varDelta ^{T} Z \varDelta , \varLambda )_{l} \rangle = \sum_{k \in \mathbf{K}_{l}} [ V ]_{k} \langle \varDelta P_{k} \varLambda Q_{k}^{T} \varDelta ^{T}, Z \rangle = \sum_{k \in \mathbf{K}_{l}} [ V ]_{k} \langle \varDelta E_{k} \otimes \varLambda \varDelta ^{T}, Z \rangle\). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, F.W., Kleniati, PM. & Rustem, B. Computation of Correlated Equilibrium with Global-Optimal Expected Social Welfare. J Optim Theory Appl 153, 237–261 (2012). https://doi.org/10.1007/s10957-012-9988-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-9988-6

Keywords

Navigation