Skip to main content
Log in

A Steepest Descent-Like Method for Variable Order Vector Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In some applications, the comparison between two elements may depend on the point leading to the so called variable order structure. Optimality concepts may be extended to this more general framework. In this paper, we extend the steepest descent-like method for smooth unconstrained vector optimization problems under a variable order structure. Roughly speaking, we see that every accumulation point of the generated sequence satisfies a necessary first order condition. We discuss the consequence of this fact in the convex case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eichfelder, G., Duc Ha, T.X.: Optimality conditions for vector optimization problems with variable ordering structures. Optimization (2011). doi:10.1080/02331934.2011.575939

    MATH  Google Scholar 

  2. Eichfelder, G.: Optimal elements in vector optimization with variable ordering structure. J. Optim. Theory Appl. 151, 217–240 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baatar, D., Wiecek, M.M.: Advancing equitability in multiobjective programming. Comput. Math. Appl. 2, 225–234 (2006)

    Article  MathSciNet  Google Scholar 

  4. Engau, A.: Variable preference modeling with ideal-symmetric convex cones. J. Global Optim. 42, 295–311 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Wiecek, M.M.: Advances in cone-based preference modeling for decision making with multiple criteria. Decis. Mak. Manuf. Serv. 1, 153–173 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15, 953–970 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fliege, J., Graña Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20, 602–626 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Graña Drummond, L.M., Maculan, N., Svaiter, B.F.: On the choice of parameters for the weighting method in vector optimization. Math. Program. 111, 201–216 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jahn, J.: Scalarization in vector optimization. Math. Program. 29, 203–218 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Luc, D.T.: Scalarization of vector optimization problems. J. Optim. Theory Appl. 55, 85–102 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bello Cruz, J.Y., Lucambio Pérez, L.R.: Convergence of a projected gradient method variant for quasiconvex objectives. Nonlinear Anal. 9, 2917–2922 (2010)

    Article  Google Scholar 

  12. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51, 479–494 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175, 395–414 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bello Cruz, J.Y., Lucambio Pérez, L.R., Melo, J.G.: Convergence of the projected gradient method for quasiconvex multiobjective optimization. Nonlinear Anal. 74, 5268–5273 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Browder, F.E.: Convergence theorems for sequences of nonlinear operators in Banach spaces. Math. Z. 100, 201–225 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  16. Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Math. Oper. Res. 19, 790–814 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Burachik, R., Graña Drummond, L.M., Iusem, A.N., Svaiter, B.F.: Full convergence of the steepest descent method with inexact line searches. Optimization 32, 137–146 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Luc, D.T., Tan, N.X., Tinh, P.N.: Convex vector functions and their subdifferential. Acta Math. Vietnam. 23, 107–127 (1998)

    MATH  MathSciNet  Google Scholar 

  19. Fukuda, E.H., Graña Drummond, L.M.: On the convergence of the projected gradient method for vector optimization. Optimization 60, 1009–1021 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28, 5–30 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989)

    Google Scholar 

  22. Chen, G.Y., Jahn, J.: Optimality conditions for set-valued optimization problems. Math. Meth. Oper. Res. 48, 187–200 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Luc, D.T.: Pareto Optimality, Game Theory and Equilibria. In: Pareto Optimality. Springer Optimization and its Applications, vol. 17, pp. 481–515 (2008)

    Google Scholar 

  24. Jahn, J.: Vector Optimization—Theory, Applications and Extensions. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  25. Jahn, J.: Mathematical Vector Optimization in Partially Ordered Linear Spaces. Peter Lang, Frankfurt (1986)

    MATH  Google Scholar 

  26. Isac, G., Tammer, C.: Application of a vector-valued Ekeland-type variational principle for deriving optimality conditions. In: Nonlinear Analysis and Variational Problems: In Honor of George Isac. Springer Optimization and Applications, vol. 35, pp. 343–365 (2010)

    Chapter  Google Scholar 

  27. Peressini, A.L.: Ordered Topological Vector Space. Harper and Row, New York (1967)

    Google Scholar 

  28. Kiwiel, K.C.: The efficiency of subgradient projection methods for convex optimization I. General level methods. SIAM J. Control Optim. 34, 660–676 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kogan, J.: Introduction to Clustering Large and High-dimensional Data. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees, whose suggestions helped us to improve the presentation of this paper. We also very grateful to Prof. Dr. Ole Peter Smith for correcting the manuscript.

This research was supported by Project CAPES-MES-CUBA 226/2012 “Modelos de Otimização e Aplicações”. First author was partially supported by PROCAD-nf-UFG/UnB/IMPA research and PRONEX-CNPq-FAPERJ Optimization research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bouza Allende.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bello Cruz, J.Y., Bouza Allende, G. A Steepest Descent-Like Method for Variable Order Vector Optimization Problems. J Optim Theory Appl 162, 371–391 (2014). https://doi.org/10.1007/s10957-013-0308-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0308-6

Keywords

Navigation