Skip to main content
Log in

Optimal Investment and Consumption with Proportional Transaction Costs in Regime-Switching Model

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with an infinite-horizon problem of optimal investment and consumption with proportional transaction costs in continuous-time regime-switching models. An investor distributes his/her wealth between a stock and a bond and consumes at a non-negative rate from the bond account. The market parameters (the interest rate, the appreciation rate, and the volatility rate of the stock) are assumed to depend on a continuous-time Markov chain with a finite number of states (also known as regimes). The objective of the optimization problem is to maximize the expected discounted total utility of consumption. We first show that for a class of hyperbolic absolute risk aversion utility functions, the value function is a viscosity solution of the Hamilton–Jacobi–Bellman equation associated with the optimization problem. We then treat a power utility function and generalize the existing results to the regime-switching case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magill, M.J.P., Constantinides, G.M.: Portfolio selection with transaction costs. J. Econ. Theor. 13, 245–263 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Davis, M.H.A., Norman, A.R.: Portfolio selection with transaction costs. Math. Oper. Res. 15, 676–713 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shreve, S.E., Soner, H.M.: Optimal investment and consumption with transaction costs. Ann. Appl. Probab. 4, 609–692 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zariphopoulou, T.: Investment-consumption models with transaction fees and Markov-chain parameters. SIAM J. Control Optim. 30, 613–636 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rishel, R.: Whether to sell or hold a stock. Commun. Inf. Syst. 6, 193–202 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Dai, M., Zhang, Q., Zhu, Q.J.: Trend following trading under a regime switching model. SIAM J. Financ. Math. 1, 780–810 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the two anonymous referees and the editors for their valuable comments, which helped to improve the exposition of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihua Liu.

Additional information

Communicated by Vladimir Veliov.

Appendix

Appendix

Proof of Theorem 3.1

In view of Remark 2.1 and Corollary 3.1, it suffices to show that for each \(i\in \mathcal {M}\), V(x,y,i) has limit 0 at any point (x 0,y 0)∈∂Π. Using (6), we obtain VK 1 V p where V p denotes the value function for the power utility function U(c)=c γ/γ where γ is specified in (6) and K 1 is some positive constant. In view of the upper bound property established in Proposition 5.3, we have

$$ V(x,y,i) \leq \left \{ \begin{array}{l@{\quad}l} K_2 [x+(1-\mu)y]^\gamma, & \mbox{if } (x,y) \in \overline{D}_0, \\ K_3 [x+(1+\lambda)y]^\gamma, & \mbox{if } (x,y) \in\overline{E}_0 \\ \end{array} \right . $$
(82)

for some constants K 2,K 3>0, where D 0 and E 0 are defined in (32) and (43), respectively.

Given (x 0,y 0)∈ 1 Π and (x 0,y 0)≠(0,0). Consider an δ-neighborhood of (x 0,y 0): B δ (x 0,y 0)={(x,y):|(x,y)−(x 0,y 0)|<δ} for some δ>0. Then for any point \((x,y)\in B_{\delta}(x_{0},y_{0})\cap\overline{D}_{0}\), we have 0≤V(x,y,i)≤K 2[x+(1−μ)y]γ. Sending (x,y)→(x 0,y 0), we obtain

$$ \lim_{(x,y)\rightarrow (x_0,y_0)} V(x,y,i)=0. $$
(83)

Similarly, we can show that (83) holds at any point (x 0,y 0)∈ 2 Π∖{(0,0)}.

Finally, we consider the origin (0,0). For any point \((x,y)\in B_{\delta}(0, 0)\cap\overline{\varPi}\) where B δ (0,0)={(x,y):|(x,y)|<δ} for some δ>0, we consider three cases:

(I) If \((x,y)\in\overline{D}_{0}\), then

$$ 0\leq V(x,y,i)\leq K_2 \bigl[x+(1-\mu )y \bigr]^\gamma; $$
(84)

(II) If \((x,y)\in\overline{E}_{0}\), then

$$ 0\leq V(x,y,i)\leq K_3 \bigl[x+(1+\lambda )y\bigr]^\gamma; $$
(85)

(III) If \((x,y)\in\varPi\setminus(\overline{D}_{0}\cup\overline{E}_{0})\), then in view of the homotheticity property (25) of the function V p , we have

$$ V(x,y,i)\leq K_1 V_p(x,y,i)=K_1 \bigl(\sqrt{x^2+y^2} \bigr)^\gamma V_p \biggl(\frac{x}{\sqrt{x^2+y^2}}, \frac{y}{\sqrt{x^2+y^2}}, i \biggr). $$
(86)

Note that \(( x/\sqrt{x^{2}+y^{2}}, y/\sqrt{x^{2}+y^{2}})\) is on the arc segment of the unit circle r=1, −arctan(1/ξ 0)≤θπ−arctan(1/δ 0), which is a closed subset in Π. In view of Corollary 3.1, V p is continuous on this arc segment and therefore bounded. It follows that

$$ V(x,y,i)\leq K_4 \bigl(\sqrt {x^2+y^2} \bigr)^\gamma, \quad \forall(x,y)\in \varPi\setminus (\overline{D}_0\cup\overline{E}_0), $$
(87)

for some constant K 4>0. Sending (x,y)→(0,0) in (84), (85), and (87), we obtain

$$ \lim_{(x,y)\rightarrow(0,0)} V(x,y,i)=0. $$
(88)

This completes the proof. □

Proof of the ≤ part of Proposition 5.4

We only show the inequality for x≤0 since that for x≥0 can be proved analogously and therefore omitted. For this purpose, we introduce a sequence of closed subsets in Π. For n=1,2,… , define

$$ \varPi_n= \biggl\{(x,y): x+(1-\mu)y\geq \frac{1}{n}, x+(1+\lambda)y\geq\frac{1}{n} \biggr\} \subset\varPi. $$
(89)

Given (x 0,y 0)∈Π, \(i\in \mathcal {M}\), and \((C,M,N)\in \mathcal {A}(x_{0},y_{0},i)\), define

$$ \nu_n=\inf\bigl\{ t\geq0: \bigl(x(t),y(t)\bigr)\notin\varPi_n\bigr\} $$
(90)

and

$$ \nu=\inf\bigl\{ t\geq0: \bigl(x(t),y(t) \bigr)=(0,0) \bigr\} $$
(91)

where (x(t),y(t)) are given by (3). It can be shown as in [3, Lemma 5.6] that ν n ν a.s. as n→∞.

We consider φ defined in (55). It is readily seen that φ(x,y,i)=V(x,y,i), ∀(x,y)∈∂D, \(i\in \mathcal {M}\). We extend the definition of φ to \(\overline{\varPi}\) by letting φ=V on \(\overline{\varPi }\setminus \overline{D}\).

Next, we introduce a sequence of closed subsets in \(\overline{D}\). For n=1,2,… , define

$$ D_n= \bigl\{(x,y)\in \overline{D}: y\leq n \bigr\} \subset\overline{D}. $$
(92)

Let (x 0,y 0)∈D. Define

$$ \tau_n=\inf \bigl\{t\geq0: \bigl(x(t),y(t)\bigr)\notin D_n\bigr\} $$
(93)

and

$$ \tau=\inf\bigl\{ t\geq0: \bigl(x(t),y(t)\bigr) \notin\overline{D} \bigr\}. $$
(94)

Then τ n τ a.s. as n→∞. Moreover, similar to [3, Proposition 5.7], we have

$$ \{ \tau<\infty\} =\bigcup _{n=1}^{\infty}\{\nu_n\wedge \tau_n=\tau\leq n\}. $$
(95)

Now consider 0≤t<nν n τ n . Note that (57) implies that for each \(i\in \mathcal {M}\), the function φ i is non-increasing in the jump directions (1−μ,−1) and (−(1+λ),1) at any point in D. Thus,

$$ \varphi \bigl(x(t),y(t),i\bigr)\leq \varphi\bigl(x(t-),y(t-),i\bigr), \quad 0\leq t <n \wedge\nu_n\wedge \tau_n, i\in \mathcal {M}. $$
(96)

Applying the Itô formula to e βt φ(x(t),y(t),α t ) for 0≤tnν n τ n , noting that φ(x(t),y(t),α t ) and y(t)φ y (x(t),y(t),α t ) are bounded on [0,nν n τ n [, we obtain

$$\begin{aligned} &E \bigl[ e^{-\beta(n \wedge\nu_n\wedge\tau_n )} \varphi\bigl(x({n \wedge\nu_n\wedge\tau_n } ),y({n \wedge\nu _n\wedge \tau_n }),\alpha_{n \wedge\nu_n\wedge\tau_n }\bigr) \bigr] \\ &\quad \leq \varphi (x_0,y_0,i) - E \biggl[ \int_0^{n \wedge\nu_n\wedge\tau_n } e^{-\beta t} \bigl[ \mathcal {L}_{\alpha_t}\varphi\bigl(x(t),y(t),\alpha_t\bigr) \\ &\quad\quad{} +C(t) \varphi_x\bigl(x(t),y(t),\alpha_t\bigr) -Q \varphi\bigl(x(t), y(t), \cdot\bigr) ( \alpha_t) \bigr]\,dt \biggr]. \end{aligned}$$
(97)

In view of (14) and (58), we have, for t∈]0,nν n τ n [,

$$ \mathcal {L}_{\alpha_t}\varphi \bigl(x(t),y(t), \alpha_t\bigr) +C(t)\varphi_x\bigl(x(t),y(t), \alpha_t\bigr) - Q \varphi\bigl(x(t), y(t), \cdot \bigr) ( \alpha_t) \geq U\bigl(C(t)\bigr). $$
(98)

Using (98) and the fact that φ=V on \(\overline {\varPi}\setminus\overline{D}\), we get from (97)

$$\begin{aligned} \varphi(x_0,y_0,i) \geq& E \bigl[ e^{-\beta(n \wedge \nu_n\wedge\tau_n )}\varphi\bigl(x({n \wedge\nu_n\wedge \tau_n } ),y({n \wedge\nu_n\wedge\tau_n }), \alpha_{n \wedge\nu_n\wedge\tau_n }\bigr) \bigr] \\ &{} + E \biggl[ \int_0^{n \wedge\nu_n\wedge\tau_n } e^{-\beta t} U \bigl(C(t)\bigr)\,dt \biggr] \\ \geq& E \bigl[I_{\{\nu_n\wedge\tau_n=\tau\leq n\}} e^{-\beta\tau }\varphi\bigl(x({ \tau} ),y({ \tau}),\alpha_{ \tau}\bigr) \bigr] \\ &{}+ E \biggl[ \int_0^{n \wedge\nu_n\wedge\tau_n } e^{-\beta t} U\bigl(C(t)\bigr)\,dt \biggr] \\ =& E \bigl[I_{\{\nu_n\wedge\tau_n=\tau\leq n\}} e^{-\beta\tau }V\bigl(x({ \tau} ),y({ \tau}), \alpha_{ \tau}\bigr) \bigr] \\ &{}+ E \biggl[ \int_0^{n \wedge\nu_n\wedge\tau_n } e^{-\beta t } U\bigl(C(t)\bigr)\,dt \biggr]. \end{aligned}$$
(99)

Note that nν n τ n ντ as n→∞. We have two cases. (I) If τ(ω)<∞, then we must have τ(ω)<ν(ω). Otherwise the state (x(t,ω),y(t,ω)) would reach the origin (0,0) and stay there forever and hence never exit \(\overline{D}\), resulting in τ(ω)=∞, a contradiction! (II) If τ(ω)=∞, then ν(ω)∧τ(ω)=ν(ω). For this case, we have

$$ \int_0^{\nu(\omega) } e^{-\beta t} U\bigl(C(t,\omega) \bigr)\,dt = \int_0^{\infty} e^{-\beta t} U \bigl(C(t,\omega)\bigr)\,dt = \int_0^{\tau(\omega) } e^{-\beta t} U\bigl(C(t, \omega)\bigr)\,dt, $$

where the first equality is due to the fact that C(t,ω)=0 for t>ν(ω). It follows by using the monotone convergence theorem that

$$ \begin{aligned} \lim_{n\rightarrow\infty} E \biggl[ \int _0^{n \wedge \nu _n\wedge\tau_n } e^{-\beta t } U\bigl(C(t)\bigr)\,dt \biggr] =E \biggl[ \int_0^{ \tau} e^{-\beta t } U\bigl(C(t)\bigr)\,dt \biggr]. \end{aligned} $$

On the other hand, we can show that \(I_{\{\nu_{n}\wedge\tau_{n}=\tau \leq n\}} \uparrow I_{\{\tau<\infty\}}\) as n→∞. Again by the monotone convergence theorem we have

$$ \lim_{n\rightarrow\infty} E \bigl[I_{\{\nu _n\wedge\tau _n=\tau\leq n\}} e^{-\beta\tau}V\bigl(x({ \tau} ),y({ \tau}),\alpha_{ \tau}\bigr) \bigr] = E \bigl[I_{\{\tau<\infty\}} e^{-\beta\tau}V\bigl(x({ \tau} ),y({ \tau}),\alpha_{ \tau}\bigr) \bigr]. $$

Therefore we obtain

$$ \begin{aligned} \varphi(x_0,y_0,i) & \geq E \bigl[I_{\{\tau<\infty\}} e^{-\beta\tau}V\bigl(x({ \tau} ),y({ \tau}), \alpha_{ \tau}\bigr) \bigr] + E \biggl[ \int_0^{ \tau} e^{-\beta t } U\bigl(C(t)\bigr)\,dt \biggr]. \end{aligned} $$
(100)

Taking the supremum of the RHS of (100) over \((C, M, N)\in \mathcal {A}(x_{0}, y_{0}, i)\) and using (19), we obtain φ(x 0,y 0,i)≥V(x 0,y 0,i). □

Partition of the Region Π by Convex Analysis

For each (x,y)∈Π and each \(i\in \mathcal {M}\), define the sub-differential of V by

$$\begin{aligned} \partial V(x,y,i) =&\bigl \{ \bigl(\delta^i_x, \delta^i_y \bigr)\in \mathbb{R}^2: V(\tilde{x}, \tilde{y},i)\leq V(x,y,i)+ \delta^i_x(\tilde {x}-x)+\delta ^i_y( \tilde{y}-y), \\ & \ \forall(\tilde{x}, \tilde{y})\in\varPi\bigr\}. \end{aligned}$$
(101)

Since V i (x,y) is concave and finite on Π, ∂V(x,y,i) is a nonempty, compact and convex subset of \(\mathbb{R}^{2}\). The function V i (x,y) is differentiable at the point (x,y)∈Π iff ∂V(x,y,i) is a singleton. In this case we have ∂V(x,y,i)={V x (x,y,i),V y (x,y,i)}.

The following two results can be established by applying [3, Lemma 6.1 and Proposition 6.2] to each function V i , \(i\in \mathcal {M}\).

Lemma A.1

Given \(i\in \mathcal {M}\). Let {(x n ,y n ),n≥1} be a sequence of points in Π with limit (x 0,y 0)∈Π. If \((\delta^{i,n}_{x}, \delta^{i,n}_{y})\in \partial V(x_{n},y_{n},i)\) for every n≥1, then the sequence \(\{ (\delta ^{i,n}_{x}, \delta^{i,n}_{y}), n\geq1\}\) is bounded and its every limit point is in ∂V(x 0,y 0,i).

Proposition A.1

Let O be an open subset of Π. Then V i is of C 1 in O if and only if ∂V(x,y,i) is a singleton for every (x,y)∈O.

Given \(i\in \mathcal {M}\), (x,y)∈Π, and \((\delta^{i}_{x}, \delta^{i}_{y})\in \partial V(x,y,i)\). We define function \(\phi(\tilde{x}, \tilde{y},i)= V(x,y,i)+\delta^{i}_{x}(\tilde{x}-x)+\delta^{i}_{y}(\tilde{y}-y), (\tilde {x}, \tilde{y})\in\varPi\). Then \(\phi(\tilde{x}, \tilde{y},i)\geq V(\tilde{x}, \tilde{y},i), \forall(\tilde{x}, \tilde{y})\in\varPi\). For each h>0 satisfying (x−(1−μ)h,y+h)∈Π from which (x,y) can be reached by a transaction, by Proposition 3.3, we have

$$ \begin{aligned} \phi(x,y,i)& = V(x,y,i) \leq V\bigl(x-(1-\mu)h,y+h,i \bigr) \\ & \leq\phi\bigl(x-(1-\mu)h,y+h,i\bigr) = \phi(x,y,i) + h\bigl[-(1-\mu)\delta ^i_x+\delta ^i_y\bigr]. \end{aligned} $$

It follows that

$$ -(1-\mu )\delta^i_x+ \delta ^i_y\geq0, \quad \forall\bigl( \delta^i_x, \delta^i_y\bigr)\in \partial V(x,y,i), \forall(x,y)\in\varPi. $$
(102)

Similarly, we can show

$$ (1+\lambda )\delta ^i_x- \delta ^i_y\geq0, \quad \forall\bigl( \delta^i_x, \delta^i_y\bigr)\in \partial V(x,y,i), \forall(x,y)\in\varPi. $$
(103)

Since for (x,y)∈Π, x+(1−μ)y>0 and x+(1+λ)y>0, we have V(x,y,i)>0 in view of Proposition 5.2. It follows from Corollary 5.1 that \(\delta^{i}_{x}=\phi_{x}(x,y)>0\), and then from (102) that \(\delta^{i}_{y}>0\). To summarize, we have

$$ \delta ^i_x>0,\quad \quad \delta^i_y>0, \quad\forall\bigl(\delta^i_x, \delta^i_y\bigr)\in\partial V(x,y,i), \forall (x,y)\in \varPi. $$
(104)

For θ sufficiently close to 1, using the homotheticity property (25), we have

$$\begin{aligned} \bigl( \theta^\gamma-1\bigr)V(x,y,i) =&V(\theta x,\theta y, i)-V(x,y,i) \\ \leq&\phi(\theta x,\theta y, i)-V(x,y,i)=(\theta -1) \bigl(x \delta^i_x + y\delta^i_y\bigr). \end{aligned}$$
(105)

Dividing both sides of (105) by θ−1, sending θ→1+ and θ→1−, respectively, we obtain

$$ x\delta ^i_x + y \delta ^i_y=\gamma V(x,y,i), \quad \forall\bigl( \delta^i_x, \delta^i_y\bigr)\in \partial V(x,y,i), \forall(x,y)\in\varPi. $$
(106)

Now, for \((\tilde{x}, \tilde{y})\in\varPi\), θ>0, we have

$$ \begin{aligned} V(\tilde{x}, \tilde{y},i) &= \theta^\gamma V \biggl(\frac{\tilde{x}}{\theta}, \frac{\tilde{y}}{\theta},i \biggr)\leq \theta ^\gamma\phi \biggl(\frac{\tilde{x}}{\theta}, \frac{\tilde {y}}{\theta },i \biggr) \\ &= \theta^\gamma \biggl[ V(x,y,i)+ \delta^i_x \biggl(\frac{\tilde {x}}{\theta}-x \biggr) +\delta^i_y \biggl( \frac{\tilde{y}}{\theta }-y \biggr) \biggr] \\ &= V(\theta x, \theta y, i) +\bigl(\theta^{\gamma -1}\delta^i_x \bigr) (\tilde{x}-\theta x) + \bigl(\theta^{\gamma-1}\delta^i_y \bigr) (\tilde{y}-\theta y). \end{aligned} $$

It follows that \((\theta^{\gamma-1}\delta^{i}_{x}, \theta^{\gamma -1}\delta ^{i}_{y}) \in\partial V(\theta x, \theta y, i)\). Thus

$$\theta^{\gamma-1} \partial V(x,y,i) \subset\partial V(\theta x, \theta y, i).$$

The reverse set containment can be established by simply replacing θ by \(\frac{1}{\theta}\), x by θx and y by θy. Therefore we have

$$ \theta ^{\gamma-1} \partial V(x,y,i) = \partial V(\theta x, \theta y, i), \quad \forall(x,y)\in\varPi, \forall\theta>0, \forall i\in \mathcal {M}. $$
(107)

Using the sub-differentials, we can partition the solvency region Π into three convex cones. First, for \(i\in \mathcal {M}\), (x,y)∈Π, \((\bar {x},\bar{y})\in\varPi\), \((\delta^{i}_{x}, \delta^{i}_{y}) \in\partial V(x,y,i)\) and \((\delta^{i}_{\bar{x}}, \delta^{i}_{\bar{y}}) \in\partial V(\bar {x},\bar{y},i)\), in view of (101), we have

$$ \begin{aligned} V(\bar{x},\bar{y},i) &\leq V(x,y,i) + \delta ^i_{x} (\bar{x}-x)+ \delta^i_{y} ( \bar{y}-y) \\ &\leq V(\bar {x},\bar {y},i) + \delta^i_{\bar{x}} (x-\bar{x})+ \delta^i_{\bar{y}} (y-\bar{y}) + \delta^i_{x} (\bar{x}-x)+ \delta^i_{y} (\bar{y}-y). \end{aligned} $$

It follows that

$$ \bigl(\delta ^i_{x}- \delta ^i_{\bar {x}}\bigr) (x-\bar{x})+\bigl(\delta^i_{y}- \delta^i_{\bar{y}}\bigr) (y-\bar{y}) \leq0. $$
(108)

For \(i\in \mathcal {M}\), (x,y)∈Π, define

$$ \begin{aligned} \vartheta^+(x,y,i)&= \max\bigl\{-(1-\mu)\delta ^i_{x}+\delta ^i_{y}: \bigl(\delta^i_x, \delta^i_y\bigr) \in\partial V(x,y,i)\bigr\}, \\ \vartheta^-(x,y,i)&=\min\bigl\{-(1-\mu)\delta^i_{x}+ \delta^i_{y}: \bigl(\delta ^i_x, \delta^i_y\bigr) \in\partial V(x,y,i)\bigr\}. \end{aligned} $$
(109)

Note that the maxima and minima in (109) are attained since ∂V(x,y,i) is compact. In addition, ϑ +(x,y,i)≥ϑ (x,y,i)≥0 due to (102).

Consider the parametric equations of the half line L 1 originating at the point (1+λ,−1) on 2 Π and parallel to 1 Π, defined by

$$ L_1: \left \{ \begin{aligned} x(\rho)&=1+\lambda-(1-\mu)\rho, \\ y(\rho )&=-1+\rho, \end{aligned} \quad \forall\rho\geq0. \right . $$
(110)

Define

$$ \rho_0^i=\inf\bigl \{ \rho>0: \vartheta ^-\bigl(x(\rho),y(\rho),i\bigr)=0\bigr\}, $$
(111)

where \(\rho_{0}^{i}=\infty\) if the above set is empty.

Lemma A.2

Given \(i\in \mathcal {M}\). For \(0<\rho<\bar{\rho}<\infty\),

$$ \vartheta^+\bigl(x(\bar {\rho}),y( \bar{\rho}),i\bigr)\leq\vartheta^-\bigl(x(\rho),y(\rho),i\bigr). $$
(112)

If \(0<\rho_{0}^{i}<\infty\), then \(\vartheta^{-}(x(\rho_{0}^{i}),y(\rho _{0}^{i}),i)=0\) and

$$ \vartheta^+\bigl(x(\rho ),y( \rho),i\bigr)=0, \quad \forall\rho>\rho_0^i. $$
(113)

Let \(i\in \mathcal {M}\) be fixed. We partition Π into two open, convex (possibly empty) cones as follows:

$$ \begin{aligned} SA^i&=\bigl\{ (x,y)\in\varPi: (\theta x, \theta y)=\bigl(x(\rho ),y(\rho)\bigr) \mbox{ for some $\theta>0$} \\ & \quad\quad \mbox{and some $ \rho$ with $\rho_{0}^{i}<\rho<\infty$} \bigr\}, \\ \varPi\setminus\overline{SA^i} &=\bigl\{ (x,y)\in\varPi: (\theta x, \theta y)=\bigl(x(\rho),y(\rho)\bigr) \mbox{ for some $\theta>0$} \\ & \quad\quad\mbox{and some $\rho$ with $0<\rho<\rho_{0}^{i}$ }\bigr \}. \end{aligned} $$

Proposition A.2

Given \(i\in \mathcal {M}\). We have

$$ -(1-\mu)\delta ^{i}_{x}+ \delta^{i}_{y}=0, \quad \forall\bigl(\delta^i_x, \delta^i_y\bigr)\in\partial V(x,y,i), \forall (x,y)\in SA^i. $$
(114)

In a similar way, we introduce the parametric equations of the half line L 2 originating at the point (−(1−μ),1) on 1 Π and parallel to 2 Π:

$$ L_2: \left \{ \begin{aligned} \tilde{x}(\rho)&=-(1-\mu)+ (1+\lambda)\rho, \\ \tilde {y}(\rho)&= 1-\rho, \end{aligned} \quad \forall\rho\geq0. \right . $$
(115)

Define

$$ \tilde{\rho }_0^i= \inf\bigl\{ \rho>0: (1+\lambda)\delta_x^i- \delta_y^i=0 \mbox{ for some $\bigl(\delta_{x}^{i}, \delta _{y}^{i}\bigr)\in\partial V\bigl(\tilde{x}(\rho), \tilde{y}(\rho), i\bigr)$} \bigr\}. $$
(116)

Let \(i\in \mathcal {M}\) be fixed. We partition Π into two open, convex (possibly empty) cones as follows:

$$ \begin{aligned} BU^i &=\bigl\{ (x,y)\in\varPi: (\theta x, \theta y)=\bigl(\tilde {x}(\rho),\tilde{y}(\rho)\bigr) \mbox{ for some $ \theta>0$} \\ &\quad\quad \mbox{and some $\rho$ with $\tilde{\rho}_{0}^{i}<\rho< \infty$} \bigr\}, \\ \varPi \setminus \overline{BU^i}& =\bigl\{ (x,y)\in\varPi: (\theta x, \theta y)=\bigl(\tilde {x}(\rho ),\tilde{y}(\rho)\bigr) \mbox{ for some $ \theta>0$} \\ & \quad\quad\mbox{and some $\rho $ with $0<\rho<\tilde{\rho}_{0}^{i}$ }\bigr\}. \end{aligned} $$

Proposition A.3

Given \(i\in \mathcal {M}\). We have

$$ (1+\lambda)\delta ^{i}_{x}-\delta ^{i}_{y}=0, \quad \forall\bigl(\delta^i_x, \delta^i_y\bigr)\in\partial V(x,y,i), \forall(x,y)\in BU^i. $$
(117)

Corollary A.1

SA iBU i=∅, \(\forall i \in \mathcal {M}\).

Corollary A.2

For each \(i \in \mathcal {M}\), the value function V i is C 1 in SA iBU i.

Note that Corollary A.2 implies that −(1−μ)V x (x,y,i)+V y (x,y,i)=0 for (x,y)∈SA i and (1+λ)V x (x,y,i)−V y (x,y,i)=0 for (x,y)∈BU i. In view of Proposition 5.4, we conclude that both SA i and BU i are nonempty, since the two equations are satisfied by V in D and E, respectively, where D and E are defined by (54) and (60), respectively. Clearly, SA iD and BU iE. Moreover, it follows from these equations, the homotheticity of the value function, and the functions presented in Proposition 5.4 that

$$ V(x,y,i) = \left \{ \begin{array}{l@{\quad}l} \frac{1}{\gamma} A_i^{\gamma-1} [x+(1-\mu )y]^\gamma, & \forall(x,y) \in SA^i, \\ \frac{1}{\gamma} B_i^{\gamma-1} [x+(1+\lambda)y]^\gamma, & \forall(x,y) \in BU^i, \\ \end{array} \right . $$
(118)

where A i , B i are given by (56) and (62), respectively.

For each \(i\in \mathcal {M}\), let \(NT^{i}=\varPi\setminus\overline{SA^{i}\cup BU^{i}}\). Then we have

Proposition A.4

Given \(i\in \mathcal {M}\). we have

$$ \left \{ \begin{aligned} -(1-\mu) \delta^{i}_{x}+\delta^{i}_{y}&>0, \\ (1+\lambda)\delta^{i}_{x}-\delta^{i}_{y}&>0, \end{aligned} \quad\forall\bigl(\delta^i_x, \delta^i_y\bigr)\in\partial V(x,y,i), \forall(x,y)\in NT^i. \right . $$
(119)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R. Optimal Investment and Consumption with Proportional Transaction Costs in Regime-Switching Model. J Optim Theory Appl 163, 614–641 (2014). https://doi.org/10.1007/s10957-013-0445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0445-y

Keywords

Navigation