Skip to main content
Log in

Inverse Stackelberg Public Goods Game with Multiple Hierarchies Under Global and Local Information Structures

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper studies the inverse Stackelberg game with multiple hierarchies under global and local information structures, where the players have discrete strategy spaces. For the classic public goods game, we solve the pure-strategy inverse Stackelberg equilibria under three typical hierarchical structures. The results reveal some counterintuitive characteristics within the systems with hierarchies, such as that the cooperation does not increase with the return rate at the equilibria. Furthermore, by defining a local information structure, we give an estimate of the fewest hierarchies required for full cooperation, which can be a constant multiple of the logarithm or square root of the population size or of the population size itself, according to different information structures and return rates. This paper proposes a novel mechanism to play the game and promote cooperation. Both the formulation and analysis method are different from existing works, and the results can find their ample implications in practice, which might help decision making in hierarchical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hardin, G.: The tragedy of the commons. Science 62, 1243–1248 (1968)

    Google Scholar 

  2. Ostrom, E.: Governing the Commons. Cambridge University Press, New York (1990)

    Book  Google Scholar 

  3. Ostrom, E.: Coping with tragedies of the commons. Annu. Rev. Pol. Sci. 2(1), 493–535 (1999)

    Article  Google Scholar 

  4. Andreoni, J., Harbaugh, W., Vesterlund, L.: The carrot or the stick: rewards, punishments, and cooperation. Am. Econ. Rev. 93(3), 901 (2003)

    Google Scholar 

  5. Sefton, M., Shupp, R., Walker, J.M.: The effect of rewards and sanctions in provision of public good. Econ. Inq. 45(4), 671–690 (2007)

    Article  Google Scholar 

  6. Choi, J.K., Ahn, T.K.: Strategic reward and altruistic punishment support cooperation in a public goods game experiment. J. Econ. Psychol. 35, 17–30 (2013)

    Article  Google Scholar 

  7. Rand, D.G., Dreber, A., Ellingsen, T., Fudenberg, D., Nowak, M.A.: Positive interactions promote public cooperation. Science 325(5945), 1272–1275 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Santos, F.C., Santos, M.D., Pacheco, J.M.: Social diversity promotes the emergence of cooperation in public goods games. Nature 454(7201), 213–216 (2008)

    Article  Google Scholar 

  9. Hauert, C., Holmes, M., Doebeli, M.: Evolutionary games and population dynamics: maintenance of cooperation in public goods games. Proc. R. Soc. Lond. B, Biol. Sci. 273(1600), 2565–2571 (2006)

    Article  Google Scholar 

  10. Hauert, C., De Monte, S., Hofbauer, J., Sigmund, K.: Volunteering as red queen mechanism for cooperation in public goods games. Science 296(5570), 1129–1132 (2002)

    Article  Google Scholar 

  11. List, J.A., Reiley, D.L.: The effects of seed money and refunds on charitable giving: Experimental evidence from a university capital campaign. J. Polit. Econ. 110(1), 215–233 (2002)

    Article  Google Scholar 

  12. Isaac, R.M., Walker, J.M., Williams, A.W.: Group size and the voluntary provision of public goods: experimental evidence utilizing large groups. J. Public Econ. 54(1), 1–36 (1994)

    Article  Google Scholar 

  13. Li, M., Song, H., Zhang, L., Zhang, L.: Maintenance of cooperation in a public goods game: a new decision-making criterion with incomplete information. Chin. Sci. Bull. 57(6), 579–583 (2012)

    Article  Google Scholar 

  14. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)

    Article  Google Scholar 

  15. Varian, H.R.: Sequential contributions to public goods. J. Public Econ. 53, 165–186 (1994)

    Article  Google Scholar 

  16. Bag, P.K., Roy, S.: On sequential and simultaneous contributions under imcomplete information. Int. J. Game Theory 40, 119–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gachter, S., Nosenzo, D., Renner, E., Sefton, M.: Sequential vs. simultaneous contributions to public goods: Experimental evidence. J. Public Econ. 94(7), 515–522 (2010)

    Article  Google Scholar 

  18. Von Stackelberg, H.: Marktform und Gleichgewicht. Vienna (1934). Market Structure and Equilibrium. Springer, Berlin (2011) (In English). Translated by, Bazin, D. and Urch, L. and Hill, R.

  19. Shen, H., Basar, T.: Incentive-based pricing for network games with complete and incomplete information. In: Jorgensen, S. (ed.) Advances in Dynamic Game Theory. Annals of the ISDG, vol. 9, pp. 431–458. Birkhauser, Boston (2007)

    Chapter  Google Scholar 

  20. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, 2nd edn. SIAM Series in Classics in Applied Mathematics. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  21. Ho, Y.C., Luh, P.B., Muralidharan, R.: Information structure, Stackleberg game, and incentive controllability. IEEE Trans. Autom. Control 26, 454–460 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Witsenhausen, H.S.: Separation of estimation and control for discrete time systems. Proc. IEEE 59(11), 1557–1566 (1971)

    Article  MathSciNet  Google Scholar 

  23. Olsder, G.J.: Phenomena in inverse Stackleberg games, Part I: Static problems. J. Optim. Theory Appl. 143, 589–600 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Olsder, G.J.: Phenomena in inverse Stackleberg games, Part II: Dynamic problems. J. Optim. Theory Appl. 143, 601–618 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stankova, K.: On Stackelberg and inverse Stackleberg game and their applications in the optimal toll design problem, the energy markets liberalization problem, and in the theory of incentive. NGInfra serie, Delft University of Technology, the Netherlands (2009)

  26. Basar, T., Selbz, H.: Closed-loop Stackelberg strategies with applications in the optimal control of multilevel systems. IEEE Trans. Autom. Control 24, 166–179 (1979)

    Article  MATH  Google Scholar 

  27. Basar, T.: Equilibrium strategies in dynamic games with multi-levels of hierarchy. Automatica 17(5), 749–754 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pang, J.S., Fukushima, M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 2(1), 21–56 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nie, P.Y., Chen, L.H., Fukushima, M.: Dynamic programming approach to discrete time dynamic feedback Stackelberg games with independent and dependent followers. Eur. J. Oper. Res. 169(1), 310–328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mu, Y., Guo, L.: Optimization and identification in a non-equilibrium dynamic game. In: Proceedings of the 48th IEEE Conference on Decision and Control, pp. 5750–5755 (2009)

    Google Scholar 

  31. Mu, Y., Guo, L.: How cooperation arises from rational players? In: Proceedings of the 49th IEEE Conference on Decision and Control, pp. 6149–6154 (2010)

    Chapter  Google Scholar 

  32. Mu, Y., Guo, L.: Towards a theory of game-based non-equilibrium control systems. J. Syst. Sci. Complex. 25, 209–226 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Professor Lei Guo in AMSS, CAS, for his inspiring help through the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifen Mu.

Additional information

Communicated by Qianchuan Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, Y. Inverse Stackelberg Public Goods Game with Multiple Hierarchies Under Global and Local Information Structures. J Optim Theory Appl 163, 332–350 (2014). https://doi.org/10.1007/s10957-013-0475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0475-5

Keywords

Navigation