Skip to main content
Log in

Numerical Exact Controllability of the 1D Heat Equation: Duality and Carleman Weights

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This article is devoted to the numerical computation of distributed null controls for the 1D heat equation. The goal is to compute a control that drives (a numerical approximation of) the solution from a prescribed initial state exactly to zero. We extend the earlier contribution of Carthel, Glowinski, and Lions, which is devoted to the computation of controls of minimal square-integrable norm. We start from some constrained extremal problems (involving unbounded weights in time), introduced by Fursikov and Imanuvilov, and we apply appropriate duality techniques. Then, we provide numerical approximations of the associated dual problems, and apply conjugate gradient algorithms. Finally, several experiments are presented, and we highlight the influence of the weights and analyze this approach in terms of robustness and efficiency. Also, the results are compared with others in a previous article of the authors, where primal methods were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fernández-Cara, E., Münch, A.: Strong convergent approximations of null controls for the 1D heat equations. SeMA J. 61, 49–78 (2013)

    Article  MATH  Google Scholar 

  2. Russell, D.L.: A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math. 52, 189–221 (1973)

    MATH  Google Scholar 

  3. Russell, D.L.: Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev. 20, 639–739 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lions, J.L.: Contrôlabilité Exacte, Perturbations et Sabilisation de Systèmes Distribués, Recherches en Mathématiques Appliquées. Tomes 1 et 2. Masson, Paris (1988)

    Google Scholar 

  5. Coron, J.M.: Control and Nonlinearity. Mathematical Surveys and Monographs, vol. 136. American Mathematical Society, Providence (2007)

    Google Scholar 

  6. Alessandrini, G., Escauriaza, L.: Null-controllability of one-dimensional parabolic equations. ESAIM Control Optim. Calc. Var. 14, 284–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lebeau, G., Robbiano, L.: Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20, 335–356 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Imanuvilov, O.Y.: Controllability of parabolic equations (Russian). Mat. Sb. 186, 109–132 (1995)

    MathSciNet  Google Scholar 

  9. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems. Encyclopedia of Mathematics and its Applications, vol. 74. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  10. Fursikov, A.V., Imanuvilov, O.Y.: Controllability of Evolution Equations. Lecture Notes Series, vol. 34, pp. 1–163. Seoul National University, Seoul (1996)

    Google Scholar 

  11. Carthel, C., Glowinski, R., Lions, J.L.: On exact and approximate boundary controllabilities for the heat equation: a numerical approach. J. Optim. Theory Appl. 82, 429–484 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glowinski, R., Lions, J.L., He, J.: Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. Encyclopedia of Mathematics and its Applications, vol. 117. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  13. Fernández-Cara, E., Guerrero, S.: Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45, 1399–1446 (2006)

    MathSciNet  Google Scholar 

  14. Münch, A., Zuazua, E.: Numerical approximation of null controls for the heat equation: ill-posedness and remedies. Inverse Probl. 26, 39p (2010)

    Article  Google Scholar 

  15. Kindermann, S.: Convergence rates of the Hilbert uniqueness method via Tikhonov regularization. J. Optim. Theory Appl. 103, 657–673 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Micu, S., Zuazua, E.: On the regularity of null-controls of the linear 1-D heat equation. C. R. Acad. Sci. Paris Ser. I 349, 673–677 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ben Belgacem, F., Kaber, S.M.: On the Dirichlet boundary controllability of the 1-D heat equation: semi-analytical calculations and ill-posedness degree. Inverse Probl. 27, 23 (2011)

    MathSciNet  Google Scholar 

  18. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1999)

    Book  Google Scholar 

  19. Glowinski, R., Lions, J.L.: Exact and Approximate Controllability for Distributed Parameter Systems. Acta Numerica, pp. 159–333. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  20. Courant, R.: Variational methods for the solution of problems with equilibrium and vibration. Bull. Am. Math. Soc. 49, 1–23 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)

    Google Scholar 

  23. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982)

    MATH  Google Scholar 

  24. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer-Verlag, New York (1999)

    Google Scholar 

  25. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence (2010)

    Google Scholar 

  26. López, A., Zuazua, E.: Some New Results to the Null Controllability of the 1-D Heat Equation. Séminaire sur les Equations aux dérivées Partielles, Exp. No. VIII. Ecole Polytechnique, Palaiseau (1998)

    Google Scholar 

  27. Zuazua, E.: Control and numerical approximation of the wave and heat equations. In: ICM2006, vol. III, pp. 1389–1417. Madrid (2006)

  28. Boyer, F., Hubert, F., Le Rousseau, J.: Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications. SIAM J. Control Optim. 48, 5357–5397 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Labbé, S., Trélat, E.: Uniform controllability of semi-discrete approximations of parabolic control systems. Syst. Control Lett. 55, 597–609 (2006)

    Article  MATH  Google Scholar 

  30. Boyer, F., Hubert, F., Le Rousseau, J.: Uniform null-controllability properties for space/time-discretized parabolic equations. Numer. Math. 118, 601–661 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ervedoza, S., Valein, J.: On the observability of abstract time-discrete linear parabolic equations. Rev. Mat. Complut. 23, 163–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Münch, A., Pedregal, P.: Numerical null controllability of the heat equation through a least squares and variational approach. Eur. J. Appl. Math. (2011). http://hal.archives-ouvertes.fr/hal-00724035

  33. Münch, A., Periago, F.: Optimal distribution of the internal null control for the 1D heat equation. J. Differ. Equ. 250, 95–111 (2011)

    Article  MATH  Google Scholar 

  34. Benabdallah, A., Dermanjan, Y., Le Rousseau, J.: Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem. J. Math. Anal. Appl. 336, 865–887 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Casas, E.: Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35, 1297–1327 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fursikov, A.V.: Optimal Control of Distributed Systems: Theory and Applications. Translations of Mathematical Monographs, vol. 187. American Mathematical Society, Providence (2000)

  37. Münch, A., Pedregal, P.: A least-squares formulation for the approximation of null controls for the Stokes system. C. R. Acad. Sci. Paris Ser. I 351, 545–550 (2013)

    Article  MATH  Google Scholar 

  38. Puel, J.P.: Global Carleman inequalities for the wave equations and applications to controllability and inverse problems. Cours Udine Mod1-06-04-542968, Udine (2011)

  39. Zhang, X.: Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities. SIAM J. Control. Optim. 39, 812–834 (2010)

    Article  Google Scholar 

  40. Cîndea, N., Fernández-Cara, E., Münch, A.: Numerical null controllability of the wave equation through primal methods and Carleman estimates. ESAIM Control Optim. Calc. Var. 19, 1076–1108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fernández-Cara, E., Münch, A.: Numerical null controllability of a semi-linear 1D heat equation via a least squares reformulation. C. R. Acad. Sci. Paris Ser. I 349, 867–871 (2011)

    Article  MATH  Google Scholar 

  42. Fernández-Cara, E., Münch, A.: Numerical null controllability of semi-linear 1D heat equations : fixed point, least squares and Newton methods. Math. Control Relat. Fields (AIMS) 3, 217–246 (2012)

    Google Scholar 

Download references

Acknowledgments

The first author was partially supported by Grant MTM2010-15992 (Spain). The authors are indebted to the anonymous referees for their comments and suggestions that served to improve substantially previous versions of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Münch.

Additional information

Communicated by Günter Leugering.

Appendix: Proofs of Propositions 3.1 and 3.2

Appendix: Proofs of Propositions 3.1 and 3.2

Proof of Proposition 3.1

First, note that

$$\begin{aligned} J_{R}(\hat{y},\hat{v}) = {1 \over 2} \left( \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}T_R(\rho )^2 |\hat{y}|^2 + \displaystyle \int \!\!\!\!\displaystyle \int _{q_{T}}\rho _{0}^2 |\hat{v}|^2 \right) \le J(\hat{y},\hat{v}) \end{aligned}$$

for all \(R > 0\). Consequently, the solutions to the problems (16) satisfy

$$\begin{aligned} J_{R}(y_{R},v_{R}) = {1 \over 2} \left( \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}T_R(\rho )^2 |y_{R}|^2 + \displaystyle \int \!\!\!\!\displaystyle \int _{q_{T}}\rho _{0}^2 |v_{R}|^2 \right) \le J(\hat{y},\hat{v}). \end{aligned}$$

This shows that \(T_R(\rho )y_{R}\) is uniformly bounded in \(L^2(Q_{T})\) and \(\rho _{0}v_{R}\) is uniformly bounded in \(L^2(q_{T})\). Therefore, at least for some subsequence one has

$$\begin{aligned} \rho _{0}v_{R} \rightarrow w \ \ \hbox {weakly in }L^2(q_{T}) \ \ \hbox {and} \ \ T_R(\rho )y_{R} \rightarrow z \ \ \hbox {weakly in }L^2(Q_{T}). \end{aligned}$$
(36)

Let us set \(\tilde{y}= \rho ^{-1}z\) and \(\tilde{v}= \rho _{0}^{-1}w\). Then it is clear from (36) that

$$\begin{aligned} \begin{array}{l} \displaystyle v_{R} = \rho _{0}^{-1}(\rho _{0}v_{R}) \rightarrow \tilde{v}\ \ \hbox {weakly in }L^2(q_{T})\\ \displaystyle y_{R} = T_R(\rho )^{-1}(T_R(\rho )y_{R}) \rightarrow \tilde{y}\ \ \hbox {weakly in }L^2(Q_{T}). \end{array} \end{aligned}$$

In fact, \(\tilde{y}\) is the state associated to \(\tilde{v}\) and \(y_{R}\) converges strongly to \(\tilde{y}\). For every \((y',v') \in \mathcal {C}(y_0,T)\), one has

$$\begin{aligned} \displaystyle J(\tilde{y},\tilde{v})&\le {1 \over 2} \liminf _{R\rightarrow +\infty } \left( \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}T_R(\rho )^2 |y_{R}|^2 + \displaystyle \int \!\!\!\!\displaystyle \int _{q_{T}}\rho _{0}^2 |v_{R}|^2 \right) \nonumber \\&\le {1 \over 2} \lim _{R\rightarrow +\infty } \left( \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}T_R(\rho )^2 |y^{\prime }|^2 + \displaystyle \int \!\!\!\!\displaystyle \int _{q_{T}}\rho _{0}^2 |v^{\prime }|^2 \right) = J(y^{\prime },v^{\prime }). \end{aligned}$$
(37)

Hence, \((\tilde{y},\tilde{v}) = (\hat{y},\hat{v})\). Finally, we also deduce from (36) that

$$\begin{aligned} \limsup _{R\rightarrow +\infty } \left( \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}T_R(\rho )^2 |y_{R}|^2 + \displaystyle \int \!\!\!\!\displaystyle \int _{q_{T}}\rho _{0}^2 |v_{R}|^2 \right) \le J(\tilde{y},\tilde{v}), \end{aligned}$$

whence we see that (17) holds. \(\square \)

Proof of Proposition 3.2

In view of the structures of the previous extremal problems, the proof of this result can be obtained from standard results in optimal control theory; see for instance [25, 35, 36]. However, for completeness, we will provide a proof that uses Fenchel–Rockafellar theory.

From the decomposition (21), we can write, for any \((y,v) \in \mathcal {A}(y_{0},T)\) that \(J_{R,\varepsilon }(y,v)=F_{R,\varepsilon }(Mv,Bv)+ G(v)\), where the functions \(F_{R,\varepsilon }\) and \(G\) are defined by

$$\begin{aligned} F_{R,\varepsilon }(z,z_{T}):= \frac{1}{2}\displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}T_R(\rho )^2 |z+\overline{y}|^2\,{\text {d}}x\,{\text {d}}t+ \frac{1}{2\varepsilon }\int _0^1 |z_{T}+\overline{y}(\cdot ,T)|^2 \,{\text {d}}x \end{aligned}$$

and

$$\begin{aligned} G(v):=\frac{1}{2}\displaystyle \int \!\!\!\!\displaystyle \int _{q_{T}}\rho _0^2 | v |^2\,{\text {d}}x\,{\text {d}}t. \end{aligned}$$

Let us introduce \(V:=L^2(Q_T)\times L^2(q_T)\). The functions \(F_{R,\varepsilon }:V \mapsto \mathbb {R}\) and \(G:L^2(q_T) \mapsto \mathbb {R}\) are both convex and continuous, and we can apply the duality Theorem of W. Fenchel and T.R. Rockafellar; see Theorem 4.2 p. 60 in [18]. We deduce that

$$\begin{aligned} \inf _{(y,v)\in \mathcal {A}(y_{0},T)} J_{R,\varepsilon }(y,v)= -\inf _{(\mu ,\varphi _T)\in V} \biggl \{G^{\star }(M^{\star }\mu + B^{\star }\varphi _T) +F_{R,\varepsilon }^{\star }(-(\mu ,\varphi _T))\biggr \}, \end{aligned}$$

where \(F_{R,\varepsilon }^{\star }\) and \(G^{\star }\) are the convex conjugate functions of \(F_{R,\varepsilon }\) and \(G\), respectively.

Note that

$$\begin{aligned} F_{R,\varepsilon }^{\star }(\mu ,\varphi _T)&= \sup _{V} \biggl \{ \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}\mu \,z \,{\text {d}}x\,{\text {d}}t + \int _0^1 \varphi _T \, z_{T} \,{\text {d}}x - F(z,z_{T})\biggr \} \\&= \frac{1}{2}\displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}T_R(\rho )^{-2} |\mu |^2 \,{\text {d}}x\,{\text {d}}t - \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}\mu \,\overline{y} \,{\text {d}}x\,{\text {d}}t \\&\quad + \frac{\varepsilon }{2} \Vert \varphi _T\Vert ^2_{L^2} - \int _0^1 \varphi _T \, \overline{y}(\cdot ,T) \,{\text {d}}x \end{aligned}$$

for all \((\mu ,\varphi _T) \in V\). On the other hand, \(G^{\star }(w)=G(\rho ^{-2}w)\) for all \(w \in L^2(Q_T)\). Therefore,

$$\begin{aligned} G^{\star }(M^{\star }\mu + B^{\star }\varphi _T) + F_{R,\varepsilon }^{\star }(-(\mu ,\varphi _T))&= \frac{1}{2} \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}T_R(\rho )^{-2} |\mu |^2 \,{\text {d}}x\,{\text {d}}t\\&+ \frac{1}{2 }\displaystyle \int \!\!\!\!\displaystyle \int _{q_{T}}\rho _0^{-2}|\varphi |^2\,{\text {d}}x\,{\text {d}}t + \frac{\varepsilon }{2} \Vert \varphi _T\Vert _{L^2}^2\\&+ \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}\mu \, \overline{y} \,{\text {d}}x\,{\text {d}}t + \int _0^1 \varphi _T \, \overline{y}(\cdot ,T) \,{\text {d}}x, \end{aligned}$$

where we have used again the notation \(\varphi =M^{\star }\mu +B^{\star }\varphi _T\).

Finally, multiplying the state equation of (25) by \(\overline{y}\) and integrating by parts, we obtain that

$$\begin{aligned} \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}\mu \, \overline{y} \,{\text {d}}x\,{\text {d}}t + \int _0^1 \varphi _T \, \overline{y}(\cdot ,T) \,{\text {d}}x = \int _0^1 \varphi (\cdot ,0) \, y_0 \,{\text {d}}x, \end{aligned}$$

whence

$$\begin{aligned}&G^{\star }(M^{\star }\mu + B^{\star }\varphi _T) + F_{R,\varepsilon }^{\star }(-(\mu ,\varphi _T))\\&\quad = {1 \over 2} \left( \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}T_R(\rho )^{-2} |\mu |^2 \,{\text {d}}x\,{\text {d}}t + \displaystyle \int \!\!\!\!\displaystyle \int _{q_{T}}\rho _0^{-2} |\varphi |^2 \,{\text {d}}x\,{\text {d}}t\right) \\&\qquad + \displaystyle \int _0^1 \varphi (\cdot ,0)\,y_{0} \,{\text {d}}x + \frac{\varepsilon }{2}\Vert \varphi _T\Vert _{L^2}^2. \end{aligned}$$

This proves that (24) is the dual of (18).

It is also easy to verify that (18) and (24) are stable and possess unique solutions. Indeed, the hypotheses of Theorem 4.2 in [18] are satisfied for (18) (notice that this is not the case for (16), since the interior of the constraint set \(\mathcal {C}(y_0,T)\) is empty).

Finally, let us deduce that the optimality conditions (26) hold. Let us set \((y,v) = (y_{R,\varepsilon },v_{R,\varepsilon })\) and \((\mu ,\varphi _{T}) = (\mu _{R,\varepsilon },\varphi _{T,R,\varepsilon })\). Then, since (24) and (18) are dual to each other, one has:

$$\begin{aligned} \displaystyle 0&= {1 \over 2} \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}T_R(\rho )^2 |y|^2 \,{\text {d}}x\,{\text {d}}t + {1 \over 2} \displaystyle \int \!\!\!\!\displaystyle \int _{q_{T}}\rho _{0}^2 |v|^2 \,{\text {d}}x\,{\text {d}}t+ {1 \over 2\varepsilon } \Vert y(\cdot \,,T)\Vert _{L^2}^2 \\&\quad + {1 \over 2} \!\displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}\!\!\!T_R(\rho )^{-2} |\mu |^2 \,{\text {d}}x\,{\text {d}}t \!+\! {1 \over 2} \!\displaystyle \int \!\!\!\!\displaystyle \int _{q_{T}}\!\!\rho _{0}^{-2} |\varphi |^2 \,{\text {d}}x\,{\text {d}}t \\&\quad + (\varphi (\cdot \,,0),y_{0}) \!+\! {\varepsilon \over 2} \Vert \varphi _T \Vert _{L^2}^2 \\&= {1 \over 2} \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}T_R(\rho )^2 |y +T_R(\rho )^{-2}\mu |^2 \,{\text {d}}x\,{\text {d}}t + {1 \over 2} \displaystyle \int \!\!\!\!\displaystyle \int _{q_{T}}\rho _{0}^2 |v - \rho _{0}^{-2}\varphi |^2 \,{\text {d}}x\,{\text {d}}t \\&\quad + {1 \over 2\varepsilon } \Vert y(\cdot \,,T) + \varepsilon \varphi _{T}\Vert _{L^2}^2 \!-\! \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}T_R(\rho )^2 \mu \,y \,{\text {d}}x\,{\text {d}}t \!+\! \displaystyle \int \!\!\!\!\displaystyle \int _{q_{T}}\rho _{0}^2\,v\,\varphi \,{\text {d}}x\,{\text {d}}t \\&\quad - (y(\cdot \,,T),\varphi _{T})_{L^2} + (\varphi (\cdot \,,0),y_{0})_{L^2}. \end{aligned}$$

However, the terms in the last line cancel, since \(\varphi = M^{\star }\mu + B^{\star }\varphi _{T}\). Consequently,

$$\begin{aligned}&\displaystyle \displaystyle \int \!\!\!\!\displaystyle \int _{Q_{T}}T_R(\rho )^2 |y + T_R(\rho )^{-2}\mu |^2 \,{\text {d}}x\,{\text {d}}t + \displaystyle \int \!\!\!\!\displaystyle \int _{q_{T}}\rho _{0}^2 |v - \rho _{0}^{-2}\varphi |^2 \,{\text {d}}x\,{\text {d}}t \displaystyle \\&\quad + {1 \over \varepsilon } \Vert y(\cdot \,,T) + \varepsilon \varphi _{T}\Vert _{L^2}^2 = 0. \end{aligned}$$

and we get (26). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Cara, E., Münch, A. Numerical Exact Controllability of the 1D Heat Equation: Duality and Carleman Weights. J Optim Theory Appl 163, 253–285 (2014). https://doi.org/10.1007/s10957-013-0517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0517-z

Keywords

Mathematics Subject Classification (2000)

Navigation