Skip to main content
Log in

Pythagorean Property and Best-Proximity Point Theorems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, a notion called proximally complete pair of subsets of a metric space is introduced, which weakens earlier notions in the theory of best-proximity points. By means of this notion, existence and convergence results of best-proximity points are proven for cyclic contraction mappings, which extent other recent results. By observing geometrical properties of Hilbert spaces, the so-called Pythagorean property is introduced. This property is employed to provide sufficient conditions for a cyclic map to be a cyclic contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirk, W.A., Srinivasan, P.S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory 4, 79–89 (2003)

    MATH  MathSciNet  Google Scholar 

  2. Di Bari, C., Suzuki, T., Vetro, C.: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 69, 3790–3794 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Eldred, A.A., Veeramani, P.: On best proximity pair solutions with applications to differential equations. J. Indian Math. Soc. (N.S.) Special volume on the occasion of the centenary year of IMS (1907–2007), 51–62 (2008).

  4. Karpagam, S., Agarwal, S.: Best proximity point theorems for p-cyclic Meir-Keeler contractions. Fixed Point Theory Appl. 2009, 9 (2009). doi:10.1155/2009/197308

    Article  Google Scholar 

  5. Pia̧tek, B.: On cyclic Meir-Keeler contractions in metric spaces. Nonlinear Anal. 74, 35–40 (2011)

    Article  MathSciNet  Google Scholar 

  6. Suzuki, T., Kikkawa, M., Vetro, C.: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918–2926 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eldred, A.A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kosuru, G.S.R., Veeramani, P.: On existence of best proximity pair theorems for relatively nonexpansive mappings. J. Nonlinear Convex Anal. 11, 71–77 (2010)

    MATH  MathSciNet  Google Scholar 

  9. Espínola, R., Fernández-León, A.: On best proximity points in metric and Banach spaces. Canad. J. Math. 63, 533–550 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Karpagam, S., Agrawal, S.: Existence of best proximity points of p-cyclic contractions. Fixed Point Theory 13, 99–105 (2012)

    MATH  MathSciNet  Google Scholar 

  11. Espínola, R.: A new approach to relatively nonexpansive mappings. Proc. Amer. Math. Soc. 136, 1987–1995 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  13. Espínola, R., Fernández-León, A., Pia̧tek, B.: Fixed points of single- and set-valued mappings in uniformly convex metric spaces with no metric convexity. Fixed Point Theory Appl. 2009, 838–844 (2009)

    Google Scholar 

  14. Papadopoulos, A.: Metric Spaces, Convexity and Nonpositive Curvature. IRMA Lectures in Mathematics and Theoretical Physics, vol. 6, pp. xii+287. European Mathematical Society, Zurich (2005). ISBN 3-03719-010-8 (MR2132506)

  15. Goebel, K., Reich, S.: Uniform convexity, hyperbolic geometry and nonexpansive mappings. Pure Appl, vol. 83, pp. ix+170. Math. Marcel Dekker Inc, New York-Basel (1984). ISBN 0-8247-7223-7 (MR0744194)

  16. Groetsch, C.W.: Elements of applicable functional analysis. Monographs and Textbooks in Pure and Applied Mathematics, vol. 55, pp. x+300. Marcel Dekker Inc, New York (1980). ISBN 0-8247-6986-4 (MR0569746)

  17. Eldred, A.A., Kirk, W.A., Veeramani, P.: Proximal normal structure and relatively nonexpansive mappings. Studia Math. 171, 283–293 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referee for the attentive reading of the submitted manuscript. Rafael Espínola was supported by DGES, Grant MTM2012-34847C02-01 and Junta de Andalucía, Grant FQM-127. G. Sankara Raju Kosuru would like to thank Council of Scientific and Industrial Research (CSIR), National Board of Higher Mathematics (NBHM) and Department of Atomic Energy (DAE), India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Espínola.

Additional information

Communicated by Stefan Rolewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espínola, R., Kosuru, G.S.R. & Veeramani, P. Pythagorean Property and Best-Proximity Point Theorems. J Optim Theory Appl 164, 534–550 (2015). https://doi.org/10.1007/s10957-014-0583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0583-x

Keywords

Mathematics Subject Classification (2000)

Navigation