Skip to main content
Log in

Variable–Time–Domain Neighboring Optimal Guidance, Part 1: Algorithm Structure

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper presents a general purpose neighboring optimal guidance algorithm that is capable of driving a dynamical system along a specified nominal, optimal path. This goal is achieved by minimizing the second differential of the objective function along the perturbed trajectory. This minimization principle leads to deriving all the corrective maneuvers, in the context of a closed-loop guidance scheme. Several time-varying gain matrices, referring to the nominal trajectory, are defined, computed offline, and stored in the onboard computer. Original analytical developments, based on optimal control theory, in conjunction with the use of a normalized time scale, constitute the theoretical foundation for three relevant features: (i) a new, efficient law for the real-time update of the time of flight (the so called time-to-go), (ii) a new termination criterion, and (iii) a new analytical formulation of the sweep method. This new guidance, termed variable–time–domain neighboring optimal guidance, is rather general, avoids the usual numerical difficulties related to the occurrence of singularities for the gain matrices, and is exempt from the main disadvantages of similar algorithms proposed in the past. For these reasons, the variable–time–domain neighboring optimal guidance has all the ingredients for being successfully applied to problems of practical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Teofilatto, P., De Pasquale, E.: A non-linear adaptive guidance algorithm for last-stage launcher control. Proc. Inst. Mech. Eng. G 213, 45–55 (1999)

    Article  Google Scholar 

  2. Calise, A.J., Melamed, N., Lee, S.: Design and evaluation of a three-dimensional optimal ascent guidance algorithm. J. Guid. Contr. Dyn. 21(6), 867–875 (1998)

    Article  Google Scholar 

  3. Lu, P., Sun, H., Tsai, B.: Closed-loop endoatmospheric ascent guidance. J. Guid. Contr. Dyn. 26(2), 283–294 (2003)

    Article  Google Scholar 

  4. Hull, D.G.: Optimal Control Theory for Applications. Springer International Edition, New York (2003)

    Book  MATH  Google Scholar 

  5. Lu, P.: Optimal feedback control laws using nonlinear programming. J. Optim. Theory Appl. 71(3), 599–611 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Townsend, G.E., Abbott, A.S., Palmer, R.R.: Guidance, flight mechanics and trajectory optimization, vol. VIII. Boost Guidance Equations. NASA Contractor Report, Washington, DC (1968)

  7. Pesch, H.J.: Real-time computation of feedback controls for constrained optimal control problem. Opt. Contr. Appl. Method 10(2), 129–145 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kugelmann, B., Pesch, H.J.: New general guidance method in constrained optimal control, part 1: numerical method. J. Optim. Theory Appl. 67(3), 421–435 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kugelmann, B., Pesch, H.J.: New general guidance method in constrained optimal control, part 2: application to space shuttle guidance. J. Optim. Theory Appl. 67(3), 437–446 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Afshari, H.H., Novinzadeh, A.B., Roshanian, J.: Determination of nonlinear optimal feedback law for satellite injection problem using neighboring optimal control. Am. J. Appl. Sc. 6(3), 430–438 (2009)

    Article  Google Scholar 

  11. Seywald, H., Cliff, E.M.: Neighboring optimal control based feedback law for the advanced launch system. J. Guid. Contr. Dyn. 17(3), 1154–1162 (1994)

    Article  Google Scholar 

  12. Yan, H., Fahroo, F., Ross, I. M.: Real-time computation of neighboring optimal control laws. AIAA Guidance, Navigation an Control Conference and Exhibit, Monterey, CA. AIAA Paper 2002–4465 (2002)

  13. Naidu, S.N., Hibey, J.L., Charalambous, C.B.: Neighboring optimal guidance for aeroassisted orbital transfer. IEEE Trans. Aerosp. Electron. Syst. 29(3), 656–663 (1993)

    Article  Google Scholar 

  14. Charalambous, C.B., Naidu, S.N., Hibey, J.L.: Neighboring optimal trajectories for aeroassisted orbital transfer under uncertainties. J. Guid. Contr. Dyn. 18(3), 478–485 (1995)

    Article  Google Scholar 

  15. Chuang, C.-H.: Theory and Computation of Optimal Low- and Medium-Thrust Orbit Transfers. NASA-CR-202202, NASA Marshall Space Flight Center (1996)

  16. Hull, D.G., Helfrich, C.E.: Neighboring Extremal guidance for systems with a piecewise linear control. In: AIAA Third Aerospace Planes Conference, Orlando (1991)

  17. Hull, D.G.: Robust Neighboring Optimal Guidance for the Advanced Launch System. NASA-CR-192087, Austin (1993)

  18. Hull, D.G., Nowak, M.J.: Neighboring suboptimal control for vehicle guidance. In: AAS/AIAA Space Flight Conference, Pasadena. Paper AAS 93–151 (1993)

  19. Pontani, M., Cecchetti, G., Teofilatto, P.: Variable–time–domain neighboring optimal guidance, part 2: application to lunar descent and soft landing. J. Optim. Theory Appl. doi:10.1007/s10957-014-0675-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Pontani.

Additional information

Communicated by Anil Rao.

Appendix: Notation and Matrices with the Related Dimensions

Appendix: Notation and Matrices with the Related Dimensions

This appendix is focused on clarifying some aspects of matrix and vector notation, and collects most of the matrices used to implement VTD-NOG, with the respective dimensions.

First of all, if a matrix \(\varvec{\Gamma }_{\mathbf {bp}} \) is defined as the result of the successive derivation of a scalar variable \(\Gamma \) with respect to two column vectors b and p (with sizes \(n_{b} \times 1\) and \(n_{p} \times 1)\), then its dimension is \(n_{b} \times n_{p} \). It is apparent that \(\varvec{\Gamma }_{\mathbf {bp}} =\Gamma _{\mathbf {pb}}^T \). Moreover, the symbol \({\mathbf {I}}_{l\times l} \) denotes the identity matrix of order \(l\), whereas \({\mathbf {0}}_{l\times r} \) represents a (\(l\times r)\)-matrix composed of zeros. Lastly, the symbol 0 is employed several times throughout the paper, and denotes a column vector of zeros, with dimension appropriate to the context.

If the guidance problem involves a state vector with \(n\) components, a control vector with \(m\) components, \(p\) unknown parameters and \(q\) boundary conditions, the matrices extensively used in VTD-NOG have the following dimensions:

$$\begin{aligned} \begin{array}{l} {\mathbf {f}}_{\mathbf {x}} \quad ( {1\times n}) \quad {\mathbf {f}}_{\mathbf {u}} \quad ( {1\times m}) \quad {\mathbf {f}}_{\mathbf {a}} \quad ( {1\times p}) \\ H_{\mathbf {u}} \quad ( {1\times m}) \quad H_{{\mathbf {xx}}} \quad ( {n\times n}) \quad H_{\mathbf {xu}} \quad ( {n\times m}) \quad H_{\mathbf {xa}} \quad ( {n\times p}) \quad H_{{\mathbf {uu}}} \quad ( {m\times m}) \quad \\ \qquad H_{\mathbf {ua}} \quad ( {m\times p})\\ {\varvec{\psi }}_{{\mathbf {x}}_0 } \quad ( {q\times n}) \quad {\varvec{\psi }}_{{\mathbf {x}}_\mathrm{{f}} } \quad ( {q\times n}) \quad {\varvec{\psi }}_{\mathbf {a}} \quad ( {q\times p}) \\ \Phi _{{\mathbf {x}}_0 {\mathbf {x}}_0 } \quad ( {n\times n}) \quad \Phi _{{\mathbf {x}}_\mathrm{{f}} {\mathbf {x}}_\mathrm{{f}} } \quad ( {n\times n}) \quad \Phi _{{\mathbf {x}}_0 {\mathbf {a}}} \quad ( {n\times p}) \quad \Phi _{{\mathbf {x}}_\mathrm{{f}} {\mathbf {a}}} \quad ( {n\times p}) \quad \Phi _{\mathbf {aa}} \quad ( {p\times p}) \\ {\mathbf {A}} \quad ( {n\times n}) \quad {\mathbf {B}} \quad ( {n\times n}) \quad {\mathbf {C}} \quad ( {n\times n}) \quad {\mathbf {D}} \quad ( {n\times p}) \quad {\mathbf {E}} \quad ( {n\times p}) \quad {\mathbf {F}} \quad ( {p\times p}) \\ {\mathbf {U}} \quad ( {n\times ( {q+p})}) \quad {\mathbf {V}} \quad ( {( {q+p})\times ( {q+p})}) \quad {\mathbf {W}} \quad ( {n\times p}) \quad \Theta \quad ( {( {q+p})\times p}) \\ {\mathbf {S}} \quad ( {n\times n}) \quad \hat{\mathrm{S}} \quad ( {n\times n}) \quad {\mathbf {R}} \quad ( {n\times q}) \quad {\mathbf {Q}} \quad ( {q\times q}) \quad {\mathbf {m}} \quad ( {n\times p}) \quad {\mathbf {n}} \quad ( {q\times p}) \quad \\ \qquad \varvec{\alpha } \quad ( {p\times p})\\ \end{array} \end{aligned}$$

Finally, it is worth remarking that, due to definition (7),

$$\begin{aligned} H_{\varvec{\lambda } \mathbf {g}} ={\mathbf {f}}_{\mathbf {g}} \quad ( {\mathbf {g}={\mathbf {x}} \text{ or } {\mathbf {u}} \text{ or } {\mathbf {a}}}) \end{aligned}$$
(74)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pontani, M., Cecchetti, G. & Teofilatto, P. Variable–Time–Domain Neighboring Optimal Guidance, Part 1: Algorithm Structure. J Optim Theory Appl 166, 76–92 (2015). https://doi.org/10.1007/s10957-014-0676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0676-6

Keywords

Mathematics Subject Classification

Navigation